Proving Theorems

Proof of AAS Theorem

If two angles and a nonincluded side of one triangle are congruent to the corresponding angles and non included side of another triangle, then the triangles are congruent.

Given: $\angle \mathrm{G} \cong \angle \mathrm{K} ; \angle \mathrm{J} \cong \angle \mathrm{M} ; \overline{H J} \cong \overline{L M}$
Prove: $\quad \Delta G H J \cong \triangle K L M$

Statements

Proof of AAS Theorem

If two angles and a nonincluded side of one triangle are congruent to the corresponding angles and non included side of another triangle, then the triangles are congruent.

Given: $\angle \mathrm{G} \cong \angle \mathrm{K} ; \angle \mathrm{J} \cong \angle \mathrm{M} ; \overline{H J} \cong \overline{L M}$
Prove: $\quad \Delta G H J \cong \triangle K L M$

Statements

Reasons

1) $\angle \mathrm{G} \cong \angle \mathrm{K} ; \angle \mathrm{J} \cong \angle \mathrm{M} ; \overline{H J} \cong \overline{L M}$ 1) Given
2) $\angle \mathrm{H} \cong \angle \mathrm{L}$
3) Third Angles Theorem
4) $\Delta G H J \cong \triangle K L M$
5) ASA Postulate

Proof of Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite the sides are congruent.

Given: $\overline{A B} \cong \overline{A C}$
Prove: $\angle \mathrm{B} \cong \angle \mathrm{C}$

Statements

1) Draw X as midpoint of $\overline{B C}$
2) Draw the aux. line $\overline{A X}$
3)
4)
5)
6)
7)

Proof of Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite the sides are congruent.
Given: $\overline{A B} \cong \overline{A C}$
Prove: $\angle \mathrm{B} \cong \angle \mathrm{C}$

Statements

1) Draw X as midpoint of $\overline{B C}$
2) Draw the aux. line $\overline{A X}$
3) $\overline{B X} \cong \overline{C X}$
4) $\overline{A B} \cong \overline{A C}$
5) $\overline{A X} \cong \overline{A X}$
6) $\triangle A B X \cong \triangle A C X$
7) $\angle \mathrm{B} \cong \angle \mathrm{C}$

CPCTC

Proof of Converse of Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite the sides are congruent.

Given: $\angle \mathrm{E} \cong \angle \mathrm{F}$

Prove: $\overline{D E} \cong \overline{D F}$

Statements

1) Draw $\overline{D X}$, the bisector of \angle EDF Every angle has one bisector.
2)
3)
4)
5)
6)

Proof of Converse of Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite the sides are congruent.
Given: $\angle \mathrm{E} \cong \angle \mathrm{F}$
Prove: $\overline{D E} \cong \overline{D F}$

Statements

1) Draw $\overline{D X}$, the bisector of $\angle E D F$
2) $\angle \mathrm{EDX} \cong \angle \mathrm{FDX}$
3) $\angle \mathrm{E} \cong \angle \mathrm{F}$
4) $\overline{D X} \cong \overline{D X}$
5) $\triangle D E X \cong \triangle D F X$
6) $\overline{D E} \cong \overline{D F}$

Reasons

Every angle has one bisector.
Definition of bisector

Given

Reflexive Property of Congruence

AAS Theorem

CPCTC

