

Page 117 Proof Practice

Statements	Reasons

Reasons	
Given	
Definition of congruent angles	
Addition Property of equality	
Angle Addition Postulate	
Substitution Property of equality	
Definition of congruent angles	
	Reasons
	Given Definition of congruen Addition Property of ea Angle Addition Postula Substitution Property of Definition of congruen

JIGIEIIIS	Keusons	
$\angle AXB \cong \angle CXD$	Given	
$m \angle AXB = m \angle CXD$	Definition of congruent angles	
$m \angle AXB + m \angle BXC = m \angle BXC + m \angle CXD$	Addition Property of equality	
$m \angle AXB + m \angle BXC = m \angle AXC$ $m \angle BXC + m \angle CXD = m \angle BXD$	Angle Addition Postulate	
$m \angle AXC = m \angle BXD$	Substitution Property of equality	
$\angle AXC \cong \angle BXD$	Definition of congruent angles	
LAXB = LCXD -> MLAXB = MLCXD -> Given DeFoF=Ls MLAXB+MLBXC=MLAX MLBXC+MLCXD=MLB	M LAXB+mLBXC=mLBXC+mLCXD Add Propof = C MLAXC=mLBXD=2 [LAXC=Li SXD Sum + Propof= Dub = 2	
LAdd Postulat	e Substitupor - Vetot 5	

2. Write a plan and a two-column proof. **Given:** \overrightarrow{BD} bisects $\angle ABC$. **Prove:** $2m\angle 1 = m\angle ABC$

Statements	Reasons

Staten	nents	Reasons		
BD bis	ects ∠ABC	Given		
$\angle 1 \cong \angle$	<u> </u>	Definition of angle bisector		
<i>m</i> ∠1 =	- <i>m</i> ∠2	Definition of congruent angles		
<i>m</i> ∠1 +	$m \angle 2 = m \angle ABC$	Angle Addition Postulate		
$m \angle 1 + m \angle 1 = m \angle ABC$		Substitution Property of equality		
2 <i>m</i> ∠1	$= m \angle ABC$	Combine like terms		
\times	Statements		Reasons	
	\overrightarrow{BD} bisects $\angle ABC$		Given	
	$\angle 1 \cong \angle 2$		Definition of an	gle bisector
	$m \angle 1 = m \angle 2$		Definition of co	ngruent angles
\otimes	$m \angle 1 + m \angle 2 = m \angle 1$	ABC	Angle Addition	Postulate
	$m \angle 1 + m \angle 1 = m \angle 1$	ABC	Substitution Pro	perty of equality
	$2m \angle 1 = m \angle ABC$		Combine like te	erms
	BD bisects LA	HBC -7/21522-	-7 m4 = m22)	OK to combine last two steps!
	Given	Def of L hisectur	. Defof ELS	mu+mu=mlabc
		mLI+	L2=mLABC	Substitution
		Angle	iddition Postulate	dml1=mLABL
				CLT

Statements	Reasons

Statements	Reasons
∠LXN is a right angle	Given
$m \angle LXN = 90$	Definition of right angle
$m \angle 1 + m \angle 2 = m \angle LXN$	Angle Addition Postulate
$m \angle 1 + m \angle 2 = 90$	Transitive Property of equality
$\angle 1$ and $\angle 2$ are complementary	Definition of complementary
LLXNisaright L-7 mLLXN=9 Green Def.ofright MLI+mL2=mLL Angle Addition Post	0 L) <u>MLI+ML2=90</u> -> <u>MLI+ML2=90</u> -> <u>Are complementa</u> <u>Are complementa</u> <u>Cor subst.</u>) <u>L</u>) <u>MLI and ML2</u> <u>Are complementa</u> <u>Complementa</u> <u>Complementa</u>