


To find the midpoint of a segment
To find the distance between two points on the coordinate plane

Midpoint formula on a number line average or mean of the endpoints

$$
\text { Formula: } \frac{a+b}{2}
$$

Given: $a=-7 ; b=4$


## KEY CONCEPT

Midpoint formula in the coordinate plane - average of the $x$-coordinates and the average of the $y$ coordinates of the endpoints

## Formula:

$$
\begin{aligned}
& {\left[\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right]_{(2}} \\
& \text { Given: } \mathrm{X}\left(-\frac{1}{\left.x_{1}, 6\right)}\right) ; \mathrm{Y}(4,-4) \\
& \quad\left(\frac{-2+4}{2}, \frac{6-4}{2}\right)=(1,1)
\end{aligned}
$$



## CLASS WORK

1. Find the coordinates of the midpoint of $\overline{A B}$ if $A(2.8,1.1)$ and $B(-3.4,5.7)$
2. The coordinates of point $Y$ are $(-10,5)$. The midpoint of $\overline{X Y}$ is (3, $-5)$. Find the coordinates of point $X$.

$$
(-10,5) \quad(3,-5)
$$

## CLASS WORK

1. Find the coordinates of the midpoint of $\overline{A B}$ if
$A(2.8,1.1)$ and $B(-3.4,5.7)$
$x_{1} \quad y_{1} \quad x_{2} y_{2}$

$$
\left(\frac{2.8+3.4}{2}, \frac{1.1+5.7}{2}\right) \rightarrow\left(\frac{-0.6}{2}, \frac{6.8}{2}\right) \rightarrow(-0.3 .3 .4)
$$

2. The coordinates of point $Y$ are $(-10,5)$. The midpoint of $\overline{X Y}$ is (3,
$-5)$. Find the coordinates of point $X$.
$y(-10, \overbrace{-10}^{+13}) \frac{+13}{\lambda(3,-5) \times\left(\frac{16}{-}-\frac{-15}{\lambda}\right)}$

## KEY CONCEPT

Distance formula- distance between two points

$$
\mathbf{d}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$



## CLASS WORK

3. In the previous graph, each unit represents 10 miles. How would you find the distance in miles?
4. Find the distance between the following pair of points: $J(-5,5)$ and $K(-3,-2)$
5. Two buses leave the station at the same time. One travels 5 miles east and then 2 miles south and the other travels 9 miles west and 4 miles north. What is the distance between the two buses?

## CLASS WORK

3. In the previous graph, each unit represents 10 miles. How would you find the distance in miles?

$$
15.3 \mathrm{un} \times \frac{10 \mathrm{mi}}{1 \mathrm{n}}=153 \text { miles }
$$

4. Find the distance between the following pair of points: $J(-5,5)$ and $\mathrm{K}(-3,-2)$

$$
x_{2}+y_{2}
$$

$$
d=\sqrt{(-3+5)^{2}+(-2-5)^{2}}=\sqrt{4+49}=\sqrt{\sqrt{53} \approx 7.3 \text { units }}
$$

5. Two buses leave the station at the same time. One travels 5 miles east and then 2 miles south and the other travels 9 miles west and 4 miles north. What is the distance between the two buses?


## SUMMARY

1. Midpoint on a number line: $\frac{a+b}{2}$
2. Midpoint in coordinate plane: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
3. Distance formula: $\mathrm{d}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

EXIT PROBLEM
Given: $A\left(20^{\frac{1}{2}}-4\right)$ and $B(-4,3)$
$x_{1} y_{1} \quad x_{2} y_{2}$
Find the midpoint of $\overline{A B}$.

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \rightarrow\left(\frac{20-4}{2}, \frac{-4+3}{2}\right) \rightarrow\left(8,-\frac{1}{2}\right)
$$

b. Find the distance between points $A$ and $B$.

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(-4-20)^{2}+(3+4)^{2}} \\
& d=\sqrt{576+49}=\sqrt{625}=25 \text { units }
\end{aligned}
$$

# ANSWER SLIDE 

1. $(-0.3,3.4)$
2. $(16,-15)$
3. Approx. 153 miles
$\sqrt{53} \approx 7.3$ units
$2 \sqrt{58} \approx 15.23$ miles

Exit: midpoint: $\left(8,-\frac{1}{2}\right) \quad A B=25$ units

## LEARNING RUBRIC

- Got It: Represents and / or applies formulas for comparison purposes, and in complex real-world situations
- Almost There: Given and endpoint and the midpoint, find the second endpoint; finds the distance between two given points with no graph
, Moving Forward: Finds midpoint between two given points; finds the distance between two points on a graph
- Getting Started: Finds the midpoint on a graphed segment


## HOMEWORK

- Page $47-49$
, 12, 14, 16, 22, 24, 26, 30, 34, 36, 40

