LAW OF SINES AND LAW OF COSINES

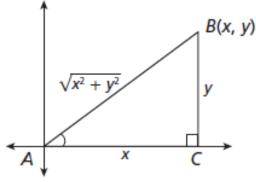
8-5

TO USE THE LAW OF SINES AND/OR THE LAW OF COSINES TO FIND ANGLE MEASURES AND SIDE LENGTHS IN NON-RIGHT TRIANGLES

OBJECTIVE

First, extend the trigonometric ratios to right triangles on a coordinate plane.

Place right triangle $\triangle ABC$ with acute $\angle A$ on a coordinate plane as shown. Let the coordinates of B be B(x, y). Then the lengths of the legs are x and y.



The length of the hypotenuse is $\sqrt{x^2 + y^2}$ by Pythagorean Theorem

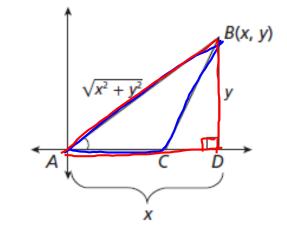
Now the trigonometric ratios for $\angle A$ can be expressed in terms of x and y.

$$\sin A = \frac{y}{\sqrt{x^2 + y^2}}$$

$$\sin A = \frac{y}{\sqrt{x^2 + y^2}}$$
 $\cos A = \frac{\times}{\sqrt{x^2 + y^2}}$ $\tan A = \frac{y}{\sqrt{x^2 + y^2}}$

$$\tan A = \frac{Y}{X}$$

Next, extend the trigonometric ratios to acute angles in non-right triangles.



Place non-right triangle $\triangle ABC$ with acute $\angle A$ on a coordinate plane as shown. Let the coordinates of B be B(x, y).

Draw a perpendicular from B to the x-axis, and label the point of intersection D. Then the lengths of the legs in right triangle $\triangle ABD$ are x and y.

The length of the hypotenuse is $\sqrt{x^2 + y^2}$ by Pythagorean Theorem

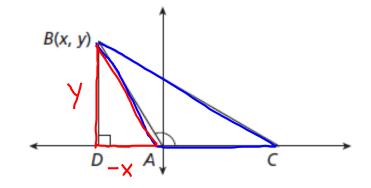
Define the trigonometric ratios for $\angle A$ in terms of x and y by using the side lengths of $\triangle ABD$.

$$\sin A = \frac{y}{\sqrt{x^2 + y^2}} \qquad \cos A = \frac{\times}{\sqrt{x^2 + y^2}} \qquad \tan A = \frac{\times}{\times}$$

C Finally, extend the trigonometric ratios to obtuse angles in non-right triangles.

Place non-right triangle $\triangle ABC$ with obtuse $\angle A$ on a coordinate plane as shown. Let the coordinates of B be B(x, y).

Draw a perpendicular from B to the x-axis, and label the point of intersection D. Then let the "lengths" of the legs in right triangle $\triangle ABD$ be x and y, where it is understood that x < 0.



The length of the hypotenuse, \overline{AB} , is $X^{\lambda} + \sqrt{x^{\lambda}}$

Define the trigonometric ratios for $\angle A$ in terms of x and y by using the sides of $\triangle ABD$.

$$\sin A = \frac{y}{\sqrt{x^2 + y^2}} \qquad \cos A = \frac{\checkmark}{\sqrt{x^2 + y^2}} \qquad \tan A = \frac{\checkmark}{\checkmark}$$

You can use a calculator to find trigonometric ratios for obtuse angles. Use a calculator to complete the table below. Round to the nearest hundredth.

83	.9925	. 1219	<u> </u>
Angle	Sine	Cosine	Tangent
97°	.9925	1219	-8.1443
122°	.8490	5299	-1.6003
165°	,2588	-,9659	2479

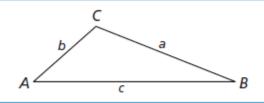
REFLECT

 Look for patterns in your table. Make a conjecture about the trigonometric ratios of obtuse angles.

You can use sines and cosines to solve problems that involve non-right triangles. One example is the Law of Sines, which is a relationship that holds for any triangle.

Law of Sines

For
$$\triangle ABC$$
, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.



You can use the Law of Sines to solve a triangle when you are given the following information.

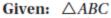
- Two angle measures and any side length (AAS or ASA information).
- Two side lengths and the measure of a non-included angle (SSA information).

G-SRT.4.10(+)

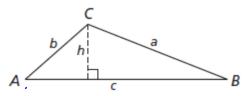
2 PROOF

The Law of Sines

Complete the proof.



Prove:
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$



A Draw an altitude from C to side \overline{AB} . Let h be the length of the altitude.

Then
$$\sin A = \frac{h}{b}$$
 and $\sin B = \frac{h}{a}$.

Solve the two equations for h.

$$h = \int SinA$$
 and $h = \Delta SinB$

Write a new equation by setting the right sides of the above equations equal to each other.

$$\frac{b \sin A}{ab} = \frac{b \sin B}{ab}$$
 Substitute.

$$\frac{Sin R}{Q} = \frac{Sin R}{D}$$
 Divide both sides by ab.

Similar reasoning shows that
$$\frac{\sin A}{a} = \frac{\sin C}{c}$$
 and $\frac{\sin B}{b} = \frac{\sin C}{c}$.

G-SRT.4.11(+)

3 EXAMPLE

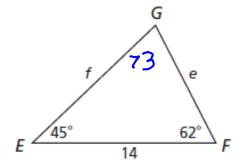
Using the Law of Sines

Solve the triangle. Round to the nearest tenth.

A Find the unknown angle measure.

$$m\angle E + m\angle F + m\angle G = 180^{\circ}$$

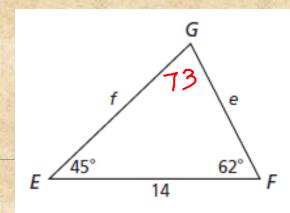
$$45^{\circ} + 62^{\circ} + \text{m} \angle G = 180^{\circ}$$



Triangle Sum Theorem

Substitute.

Solve for $m \angle G$.



B Use the Law of Sines to find the unknown side length e.

$$\frac{\sin E}{e} = \frac{\sin G}{g}$$

$$\frac{\sin 45^{\circ}}{e} = \frac{\sin 73}{14}$$

$$\frac{14}{\sin 45^{\circ}} = e \cdot \sin(\frac{73}{2})$$

$$\frac{14 \cdot \sin 45^{\circ}}{\sin 73} = e$$

$$e \approx 10.4$$

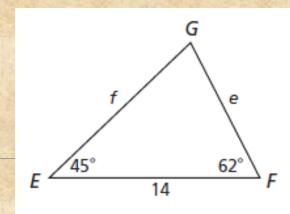
Law of Sines

Substitute.

Multiply both sides by the product of the denominators.

Solve for e.

Use a calculator to evaluate. Round.



Use the Law of Sines to find the unknown side length f.

$$\frac{\sin F}{f} = \frac{\sin G}{g}$$

$$\frac{\sin 62^{\circ}}{f} = \frac{\sin 73}{14}$$

$$\frac{\sin 62^{\circ}}{f} = f \cdot \sin(\frac{73}{2})$$

$$\frac{14 \cdot \sin 62^{\circ}}{\sin 73} = f$$

$$f \approx \frac{1}{12} = \frac{1}{12}$$

Law of Sines

Substitute.

Multiply both sides by the product of the denominators.

Solve for f.

Use a calculator to evaluate. Round.

When you are given SSS or SAS information about a triangle, you cannot use the Law of Sines to solve the triangle. However, this information determines a unique triangle, so there should be some way to find the unknown side lengths and angle measures. The Law of Cosines is useful in this case.

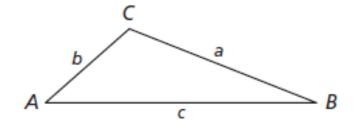
Law of Cosines

For $\triangle ABC$,

$$a^2 = b^2 + c^2 - 2bc \cos A,$$

$$b^2 = a^2 + c^2 - 2ac\cos B,$$

$$c^2 = a^2 + b^2 - 2ab\cos C.$$



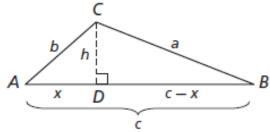
G-SRT.4.10(+) **PROOF**

The Law of Cosines

Complete the proof.

Given: $\triangle ABC$

Prove: $a^2 = b^2 + c^2 - 2bc \cos A$

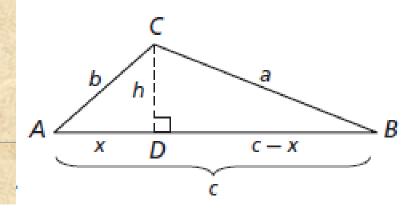


A Draw an altitude \overline{CD} to side \overline{AB} . Let h be the length of the altitude.

Let *x* be the length of \overline{AD} . Then c - x is the length of \overline{DB} .

In
$$\triangle ADC$$
, $\cos A = \frac{\times}{b}$ and so $x = \frac{b \cos 1}{b}$.

Also, by the Pythagorean Theorem, $x^2 + h^2 = \frac{b^2}{b^2}$.



B Now consider $\triangle CDB$.

$$a^2 = (c - x)^2 + h^2$$

$$a^2 = c^2 - 2cx + \left(x^2 + h^2\right)$$

$$a^2 = c^2 - 2cx + b^2$$

$$a^2 = b^2 + c^2 - 2cx$$

$$a^2 = b^2 + c^2 - 2c(b \cos \hat{+})$$

$$(c-x)(c-x)$$

Pythagorean Theorem C 2-C×-C×-IX

Expand
$$(c - x)^2$$
.

Substitute $\frac{b^2}{}$ for $x^2 + h^2$.

Rearrange terms.

Substitute $\frac{1}{2}$ for x.

Similar reasoning shows that $b^2 = a^2 + c^2 - 2ac \cos B$ and $c^2 = a^2 + b^2 - 2ab \cos C$.

G-SRT.4.11(+) 5 E X A M P L E

Using the Law of Cosines

Solve the triangle. Round to the nearest tenth.

A Find the measure of the obtuse angle first.

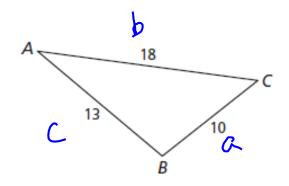
$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$18^{2} = 10^{2} + 13^{2} - 2(10)(13)\cos B$$

$$18^{2} - 10^{2} - 13^{2} = -\lambda(10)(13)\cos B$$

$$\cos B = \frac{18^{2} - 10^{2} - 13^{2}}{-2(10)(13)} = \frac{55}{-2460}$$

$$m\angle B \approx \cos^{-1}(-2115) \approx 102.2$$



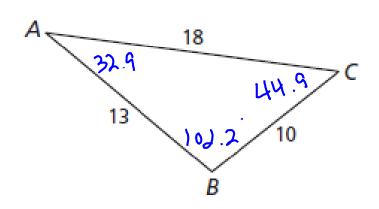
Law of Cosines

Substitute.

Solve for cos B.

Simplify. Round to four decimal places.

Solve for $m \angle B$.



B Use the Law of Sines to find m∠C.

$$\frac{\sin C}{c} = \frac{\sin B}{b}$$

$$\frac{\sin C}{13} = \frac{\sin |O2.2125|}{|8|}$$

$$\sin C = \frac{13 \sin 102.205}{18} \approx \frac{.7059}{.000}$$

$$m \angle C \approx \sin^{-1}(.7059) \approx 44.9$$

Law of Sines

Substitute.

Multiply both sides by 13, and then simplify.

Solve for $m\angle C$.

Use the Triangle Sum Theorem to find the remaining angle measure.

$$m\angle A \approx 180^{\circ} - \frac{102.2}{4.9} - \frac{44.9}{4.9} = \frac{32.9}{4.9}$$

HOMEWORK

Thursday: Page 573: 2 – 16 even

Friday: Pages 573 – 574: 26 - 38 even