SIMILARITY IN RIGHT TRIANGLES: ADDITIONAL EXAMPLES

8-1

OBJECTIVE

TO FIND AND USE RELATIONSHIPS IN RIGHT TRIANGLES

VOCABULARY

Geometric Mean Corollary 8-1-2: The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.

$$\frac{SL}{SL} = \frac{LL}{LL}$$
$$\frac{AD}{CD} = \frac{CD}{DB}$$

VOCABULARY

Geometric Mean Corollary 8-1-3: Each leg of the original (largest) triangle is the geometric mean of the hypotenuse and the segment of the hypotenuse adjacent to the leg.

$\frac{SL}{SL} =$	$=\frac{HYP}{HYP}$	$\frac{AD}{AC} =$	$= \frac{AC}{AB}$
$\frac{LL}{LL} =$	$= \frac{HYP}{HYP}$	$\frac{DB}{CB} =$	$=\frac{CB}{AB}$

.

Write a similarity statement relating the three triangles in the diagram.

CLASS WORK

ANOP~ANQO~DOQ?

CLASS WORK

Use the figure to complete each proportion.

r

 $\frac{z}{12 - med} \frac{S}{y} = \frac{y}{t} \frac{s}{s} \frac{s}{s} \frac{s}{s}$ 3. Li-meds r hyp. med 4. $u - lg \frac{d}{r} = \frac{1}{x} hyp - lg$ hyp-sm q_ t sl-sm thyp-medr v sh - med q

Find the geometric mean of the pair of numbers.

5. 14 and 6

 $\frac{a}{x} = \frac{x}{b}$ $\frac{14}{x} = \frac{x}{6} \quad x = 2\sqrt{21}$

CLASS WORK

6. The diagram shows the parts of a right triangle with an altitude to the hypotenuse. For the two given measures, find the other four. **Use simplest** radical form.

7. To estimate the height of a Douglas fir, Jan positions herself so that her lines of sight to the top and bottom of the tree form a 90° angle. Her eyes are about 1.6 m above the ground, and she is standing 7.8 m from the tree. What is the height of the tree to the nearest meter?

CLASS WORK

 $\frac{x}{7.8} = \frac{7.8}{1.6}$ 1.6x = 60.84 x = 38.025 + 1.6 $\overline{29.625}$

240m

8. The altitude to the hypotenuse of a right triangle divides the hypotenuse into two segments that are 10 in. long and 22.5 in. long. What is the area of the triangle?

CLASS WORK

 $A = \frac{1}{2} b h$ $A = \frac{1}{2} (32.5)(15)$ $A = 243.75 in^{2}$

SUMMARY

THE ALTITUDE TO THE HYPOTENUSE OF A RIGHT TRIANGLE DIVIDES THE TRIANGLE INTO TWO RIGHT TRIANGLES THAT ARE SIMILAR TO EACH OTHER AND TO THE ORIGINAL TRIANGLE.

HOMEWORK PAGES 537 – 539 16 – 38 EVEN; 42, 48