SIMILARITY IN RIGHT TRIANGLES:
 ADDITIONAL EXAMPLES

$8-1$

OBJECTIVE

TO FIND AND USE RELATIONSHIPS IN RIGHT TRIANGLES

VOCABULARY

Geometric Mean Corollary 8-1-2: The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.

$$
\begin{gathered}
\frac{S L}{S L}=\frac{L L}{L L} \\
\frac{A D}{C D}=\frac{C D}{D B}
\end{gathered}
$$

VOCABULARY

Geometric Mean Corollary 8-1-3: Each leg of the original (largest) triangle is the geometric mean of the hypotenuse and the segment of the hypotenuse adjacent to the leg.

Write a similarity statement relating the three triangles in the diagram.

$\triangle N O P \sim \triangle N Q O \sim \triangle O Q R$

Use the figure to complete each proportion.

$$
2_{u-\operatorname{med}}^{2_{u m}} \frac{s}{y}=\frac{y}{t} \mathrm{sL} \cdot \mathrm{med}
$$

$$
\begin{aligned}
& \text { 3. } u-\mathrm{med}_{d} \frac{s}{u}=\frac{r}{x} \text { hyp -med } \\
& \text { 4. } \mathrm{hyp}_{\mathrm{g}} \mathrm{lg}
\end{aligned}
$$

$$
h_{y p-S M}^{q} \underline{\theta} s L-s m
$$

$$
\text { renal hyp-med } \bar{r}=\bar{y} s L \text {-med }
$$

Find the
geometric mean of the pair of numbers.

$$
\begin{aligned}
& \frac{a}{x}=\frac{x}{b} \\
& \frac{14}{x}=\frac{x}{6} \quad \sqrt{x^{2}}=\sqrt{84}<\left(\begin{array}{c}
144 \\
:\left(\frac{7}{2}\right. \\
\frac{2}{3}
\end{array}\right)
\end{aligned}
$$

CLASS WORK

6. The diagram shows the parts of a right triangle with an altitude to the hypotenuse. For the two given measures, find the other four. Use simplest radical form.

$$
h=12, h_{1}=4
$$

7. To estimate the height of a Douglas fir, Jan positions herself so that her lines of sight to the top and bottom of the tree form a 90° angle. Her eyes are about 1.6 m above the ground, and she is standing 7.8 m from the tree. What is the height of the tree to the nearest meter?

CLASS WORK

$\approx 40 \mathrm{~m}$

$$
\begin{aligned}
\frac{x}{7.8} & =\frac{7.8}{1.6} \\
1.6 x & =60.84 \\
x & =38.025 \\
& +\frac{1.6}{39.625}
\end{aligned}
$$

8. The
altitude to the
hypotenuse of a right triangle divides the hypotenuse into two segments that are 10 in. long and
22.5 in. long. What is the area of the triangle?

CLASS WORK

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2}(32.5)(15) \\
& A=243.7 \mathrm{in}^{2}
\end{aligned}
$$

SUMMARY

THE ALTITUDE TO THE HYPOTENUSE OF A RIGHT TRIANGLE DIVIDES THE TRIANGLE INTO TWO RIGHT TRIANGLES THAT ARE SIMILAR TO EACH OTHER AND TO THE ORIGINAL TRIANGLE.

HOMEWORK

PAGES 537-539
16-38 EVEN; 42, 48

