8-1

SIMILARITY IN RIGHT TRIANGLES

OBJECTIVE

TO FIND AND USE RELATIONSHIPS IN RIGHT TRIANGLES

VOCABULARY

Theorem 8-1-1: The altitude to the hypotenuse of a right triangle divides the triangle into two triangles that are similar to the original triangle and to each other.

VOCABULARY

Geometric mean - For any two positive numbers a and b, the geometric mean of a and b is the positive number x such that:

$$
\frac{a}{x}=\frac{x}{b} \quad \begin{array}{|cl}
\text { extremes } \\
\underset{\text { means }}{a: x=x: b} & x^{2}=a b \\
x=\sqrt{a b}
\end{array}
$$

The positive numbers are the extremes, and x represents both means to show that the means are equal.

VOCABULARY

Geometric Mean Corollary 8-1-2: The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.

$\frac{S L}{S L}=\frac{L L}{L L}$
$\frac{A D}{C D}=\frac{C D}{D B}$

VOCABULARY

Geometric Mean Corollary 8-1-3: Each leg of the original (largest) triangle is the geometric mean of the hypotenuse and the segment of the hypotenuse adjacent to the leg.

Identify the following in right \triangle QRS.

1. the hypotenuse $\overline{Q R}$
2. the segments of the hypotenuse $\overline{Q T}$ and $\overline{T R}$
3. the altitude $\overline{S T}$ to tre hyp.
4. the segment of the hypotenuse adjacent to leg $\overline{Q S} \overline{Q i}$

CLASS WORK

2. Find x, y, and z .

THE ALTITUDE TO THE HYPOTENUSE OF A RIGHT TRIANGLE DIVIDES THE TRIANGLE INTO TWO RIGHT TRIANGLES THAT ARE SIMILAR TO EACH OTHER AND TO THE ORIGINAL TRIANGLE.

SUMMARY

