7-6
 Similarity on Coordinate Plane

* To prove similarity with distance formula

Example 2: Finding Coordina

 of Similar TrianglesGiven that $\triangle T U O \sim \Delta R S O$, find the coordinates of U and the scale factor.
Since $\triangle T U O \sim \Delta R S O$,
$\frac{R O}{T O}=\frac{O K^{S}}{O U}$
$\frac{12}{9}=\frac{16}{O U} \quad \begin{aligned} & \text { Substitute } 12 \text { for } R O, \\ & 9 \text { for } T O \text {, and } 16 \text { for } O S .\end{aligned}$

$120 U=144 \quad$ Cross Products Prop.
$O U=12 \quad$ Divide both sides by 12 .
$(0,16) \longrightarrow\left(0 \cdot \frac{3}{4}, 16 \cdot \frac{3}{4}\right) \longrightarrow(0,12)$
So the scale factor is $\frac{3}{4}$.

Example 3: Proving Triangles Are Similar

Given: $E(-2,-6), F(-3,-2), G(2,-2)$, $H(-4,2)$, and $J(6,2)$.

Prove: $\triangle E H J$ ~ $\triangle E F G$.
Step 1 Plot the points and draw the triangles.

Example 3 Continued

Step 2 Use the Distance Formula to find the side lengths.

$$
\begin{array}{rlrl}
E H & =\sqrt{[-4-(-2)]^{2}+[2-(-6)]^{2}} & E J & =\sqrt{[6-(-2)]^{2}+[2-(-6)]^{2}} \\
& =\sqrt{68}=2 \sqrt{17} & & =\sqrt{128}=8 \sqrt{2} \\
E F & =\sqrt{[-3-(-2)]^{2}+[-2-(-6)]^{2}} E G & =\sqrt{[2-(-2)]^{2}+[-2-(-6)]^{2}} \\
& =\sqrt{17} & & =\sqrt{32}=4 \sqrt{2}
\end{array}
$$

Example 3 Continued

Step 3 Find the similarity ratio.

$$
\begin{aligned}
\frac{E H}{E F} & =\frac{2 \sqrt{17}}{\sqrt{17}} & \frac{E J}{E F_{G}} & =\frac{8 \sqrt{2}}{4 \sqrt{2}} \\
& =\frac{2}{1} & & =\frac{4}{2} \\
& =2 & & =2
\end{aligned}
$$

Since $\frac{E H}{E F}=\frac{E J}{E G}$ and $\angle E \cong \angle E$, by the Reflexive Property, $\triangle E H J \sim \triangle E F G$ by $\mathrm{SAS} \sim$.

Example 4: Using the SSS Similarity Theorem

Graph the image of $\triangle A B C$ after a dilation with scale factor $\frac{2}{3}$.

Verify that $\triangle A^{\prime} B^{\prime} C^{\prime} \sim \Delta A B C$.

Example 4 Continued

Step 1 Multiply each coordinate by $\frac{2}{3}$ to find the coordinates of the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$.
$A(0,3) \longrightarrow A^{\prime}\left(0 \cdot \frac{2}{3}, 3 \cdot \frac{2}{3}\right) \longrightarrow A^{\prime}(0,2)$
$B(3,6) \longrightarrow B^{\prime}\left(3 \cdot \frac{2}{3}, 6 \cdot \frac{2}{3}\right) \longrightarrow B^{\prime}(2,4)$
$C(6,0) \longrightarrow C^{\prime}\left(6 \cdot \frac{2}{3}, 0 \cdot \frac{2}{3}\right) \longrightarrow C^{\prime}(4,0)$
Step 2 Graph $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Example 4 Continued

Step 3 Use the Distance Formula to find the side lengths.

$$
\begin{aligned}
A B & =\sqrt{(3-0)^{2}+(6-3)^{2}} \\
& =\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
A^{\prime} B^{\prime} & =\sqrt{(2-0)^{2}+(4-2)^{2}} \\
& =\sqrt{8}=2 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
B C & =\sqrt{(6-3)^{2}+(0-6)^{2}} \\
& =\sqrt{45}=3 \sqrt{5}
\end{aligned}
$$

$$
A C=\sqrt{(6-0)^{2}+(0-3)^{2}}
$$

$$
=\sqrt{45}=3 \sqrt{5}
$$

$$
\begin{aligned}
B^{\prime} C^{\prime} & =\sqrt{(4-2)^{2}+(0-4)^{2}} \\
& =\sqrt{20}=2 \sqrt{5} \\
A^{\prime} C^{\prime} & =\sqrt{(4-0)^{2}+(0-2)^{2}} \\
& =\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

Example 4 Continued

Step 4 Find the similarity ratio.

$$
\frac{A^{\prime} B^{\prime}}{A B}=\frac{2 \sqrt{2}}{3 \sqrt{2}}=\frac{2}{3}, \frac{B^{\prime} C^{\prime}}{B C}=\frac{2 \sqrt{5}}{3 \sqrt{5}}=\frac{2}{3}, \frac{A^{\prime} C^{\prime}}{A C}=\frac{2 \sqrt{5}}{3 \sqrt{5}}=\frac{2}{3}
$$

Since $\frac{A^{\prime} B^{\prime}}{A B}=\frac{B^{\prime} C^{\prime}}{B C}=\frac{A^{\prime} C^{\prime}}{A C}, \triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$ by SSS \sim.

Pages 513-514 10, 12, 14, 16, 22

