

Similarity on Coordinate Plane

To prove similarity with distance formula

Example 2: Finding Coordinates of Similar Triangles

Given that $\Delta TUO \sim \Delta RSO$, find the coordinates of U and the scale factor.

Since $\Delta TUO \sim \Delta RSO$,

 $\frac{RO}{TO} = \frac{OX}{OU}$ $\frac{12}{9} = \frac{16}{OU}$ 12OU = 144OU = 12

Substitute 12 for RO, 9 for TO, and 16 for OS.

Cross Products Prop.

Divide both sides by 12.

$$(0,16) \longrightarrow \left(0 \bullet \frac{3}{4}, 16 \bullet \frac{3}{4}\right) \longrightarrow (0,12)$$

So the scale factor is $\frac{3}{4}$

Example 3: Proving Triangles Are Similar

Given: *E*(-2, -6), *F*(-3, -2), *G*(2, -2), *H*(-4, 2), and *J*(6, 2).

Prove: $\Delta EHJ \sim \Delta EFG$.

Step 1 Plot the points and draw the triangles.

Example 3 Continued

Step 2 Use the Distance Formula to find the side lengths.

$$EH = \sqrt{\left[-4 - \left(-2\right)\right]^2 + \left[2 - \left(-6\right)\right]^2} = \sqrt{\left[6 - \left(-2\right)\right]^2 + \left[2 - \left(-6\right)\right]^2} = \sqrt{128} = 8\sqrt{2}$$

$$EF = \sqrt{\left[-3 - \left(-2\right)\right]^2 + \left[-2 - \left(-6\right)\right]^2} EG = \sqrt{\left[2 - \left(-2\right)\right]^2 + \left[-2 - \left(-6\right)\right]^2} = \sqrt{32} = 4\sqrt{2}$$

Example 3 Continued

Step 3 Find the similarity ratio.

$$\frac{EH}{EF} = \frac{2\sqrt{17}}{\sqrt{17}}$$

$$\frac{EJ}{EF} = \frac{8\sqrt{2}}{4\sqrt{2}}$$

$$= \frac{2}{1}$$

$$= \frac{4}{2}$$

$$= 2$$

Since $\frac{EH}{EF} = \frac{EJ}{EG}$ and $\angle E \cong \angle E$, by the Reflexive Property, $\Delta EHJ \sim \Delta EFG$ by SAS ~ .

Example 4: Using the SSS Similarity Theorem

Graph the image of $\triangle ABC$ after a dilation with scale factor $\frac{2}{3}$.

Verify that $\Delta A'B'C' \sim \Delta ABC$.

Example 4 Continued

Step 1 Multiply each coordinate by $\frac{2}{3}$ to find the coordinates of the vertices of $\Delta A'B'C'$.

$$A(0,3) \longrightarrow A'\left(0 \bullet \frac{2}{3}, 3 \bullet \frac{2}{3}\right) \longrightarrow A'(0,2)$$
$$B(3,6) \longrightarrow B'\left(3 \bullet \frac{2}{3}, 6 \bullet \frac{2}{3}\right) \longrightarrow B'(2,4)$$
$$C(6,0) \longrightarrow C'\left(6 \bullet \frac{2}{3}, 0 \bullet \frac{2}{3}\right) \longrightarrow C'(4,0)$$

Step 2 Graph $\Delta A'B'C'$.

Example 4 Continued

Step 3 Use the Distance Formula to find the side lengths.

$$AB = \sqrt{(3-0)^2 + (6-3)^2} = \sqrt{18} = 3\sqrt{2}$$

$$A'B' = \sqrt{(2-0)^2 + (4-2)^2} = \sqrt{8} = 2\sqrt{2}$$

$$BC = \sqrt{(6-3)^2 + (0-6)^2}$$
$$= \sqrt{45} = 3\sqrt{5}$$

$$AC = \sqrt{(6-0)^2 + (0-3)^2}$$
$$= \sqrt{45} = 3\sqrt{5}$$

$$B'C' = \sqrt{(4-2)^2 + (0-4)^2}$$
$$= \sqrt{20} = 2\sqrt{5}$$

$$A'C' = \sqrt{(4-0)^2 + (0-2)^2} = \sqrt{20} = 2\sqrt{5}$$

Example 4 Continued

Step 4 Find the similarity ratio.

$$\frac{A'B'}{AB} = \frac{2\sqrt{2}}{3\sqrt{2}} = \frac{2}{3}, \frac{B'C'}{BC} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}, \frac{A'C'}{AC} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}$$

Since $\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC}$, $\Delta ABC \sim \Delta A'B'C'$ by SSS ~.

HOMEWORK

Pages 513 - 514 10, 12, 14, 16, 22