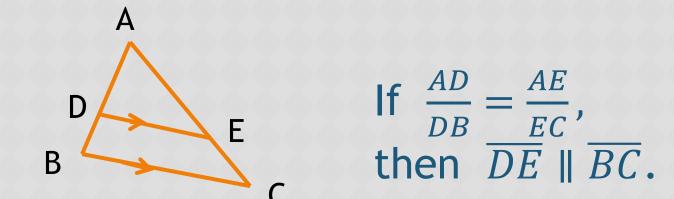
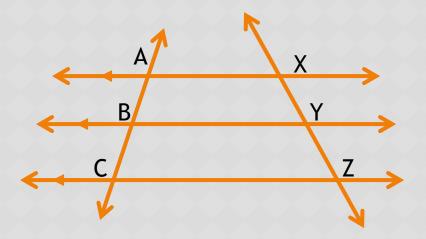


Proportions in Triangles

OBJECTIVE

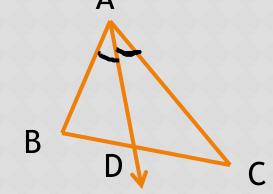

To use both the Triangle Proportionality Theorem and the Triangle-Angle-Bisector Theorem

Triangle Proportionality Theorem (Side-Splitter Theorem) - If a line is parallel to one side of a triangle and intersects the other two sides, then it divides those sides proportionally.



If $\overline{DE} \parallel \overline{BC}$, then $\frac{AD}{DB} = \frac{AE}{EC}$

Converse of Triangle Proportionality Theorem - If a line divides two sides of a triangle proportionally, then it is parallel to the third side.



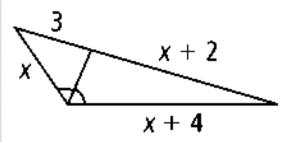
Corollary to the Triangle Proportionality Theorem - If three (or more) parallel lines intersect two transversals, then they divide the transversals proportionally.

If $\overrightarrow{AX} \parallel \overleftarrow{BY} \parallel \overleftarrow{CZ}$, then $\frac{AB}{BC} = \frac{XY}{YZ}$

Triangle-Angle-Bisector Theorem - If a ray bisects an angle of a triangle, then it divides the opposite side into two segments that are proportional to the other two sides of the triangle.

If \overrightarrow{AD} bisects $\angle BAC$, then $\frac{BD}{DC} = \frac{AB}{AC}$

CLASS WORK

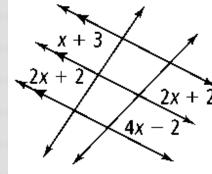

Solve for x.

3x 4 7.5 2.5x

 $\frac{3x}{4} = \frac{7.5}{2.5x}$ $7.5x^2 = 30$ $x^2 = 4$ $x = \pm 2$ x = 2

2.

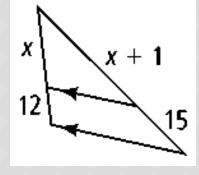
CLASS WORK Solve for x.


5	X
$\overline{x+2} =$	$\overline{x+4}$

3(x + 4) = x(x + 2) $3x + 12 = x^{2} + 2x$ $x^{2} - x - 12 = 0$ (x - 4)(x + 3) = 0 $x = 4 \text{ or } \Rightarrow 3$

x + 3	$\frac{2x+2}{2}$
$\frac{1}{2x+2}$	$-\frac{1}{4x-2}$

(x + 3)(4x - 2) = (2x + 2)(2x + 2) $4x^{2} - 2x + 12x - 6 = 4x^{2} + 4x + 4x + 4$ 10x - 6 = 8x + 4 2x = 10x = 5



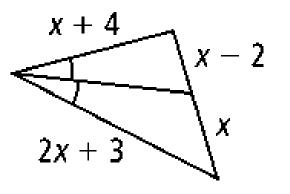
 $\frac{x}{12} =$

Solve for x.

$\frac{x+1}{15}$	15x = 12(x + 1) 15x = 12x + 12
	3x = 12
	x = 4

 $6 \qquad x - 4 \qquad \frac{6}{9} = \frac{x - 4}{x}$

$$6x = 9(x - 4)$$


$$6x = 9x - 36$$

$$-3x = -36$$

$$x = 12$$

6.

$$\frac{x-2}{x} = \frac{x+4}{2x+3}$$

$$(x-2)(2x+3) = x(x+4)$$

$$2x^{2} + 3x - 4x - 6 = x^{2} + 4x$$

$$x^{2} - 5x - 6 = 0$$

$$(x-6)(x+1) = 0$$

$$x = 6 \text{ or } \Rightarrow 1$$

SUMMARY

Two more Theorems that create proportions in triangles are the following: >Side-Splitter Theorem >Triangle-Angle-Bisector Theorem

HOMEWORK

Pages 499 - 501 8 - 20 even; 21 26 - 36 even