

Similarity

Transformations

* To apply dilations in the coordinate plane

To use transformations to show similarity

Example 1: Drawing and
 Describing Dilations

A. Apply the dilation D to the polygon with the given vertices. Describe the dilation.

$$
\begin{aligned}
& D:(x, y) \rightarrow(3 x, 3 y) \\
& A(1,1), B(3,1), C(3,2) \\
& A^{\prime}(3,3), B^{\prime}(9,3), C^{\prime}(9,6)
\end{aligned}
$$

dilation with center $(0,0)$ and scale factor 3

Example 2 : Determining Whether Polygons are Similar

Determine whether the polygons with the given vertices are similar.
A. $A(-6,-6), B(-6,3), C(3,3)$,
$D(3,-6)$ and $H(-2,-2)$,
$J(-2,1), K(1,1), L(1,-2)$
$(x, y) \rightarrow\left(\frac{1}{3} x, \frac{1}{3} y\right)$
$A(-6,-6) \rightarrow H(-2,-2)$

Yes; ABCD maps to HJKL by a dilation:

$$
(x, y) \rightarrow\left(\frac{1}{3} x \frac{1}{1} y\right)
$$

Example 2: Continued

D. $F(3,3), G(3,6), H(9,3)$, $J(9,-3)$ and $S(-1,1)$, $T(-1,2), U(-3,1), V(-3,-1)$. $(x, y) \rightarrow(-x, y) \rightarrow\left(\frac{1}{3} x, \frac{1}{3} y\right)$
$G(3,6) \rightarrow G^{\prime}(-3,6) \rightarrow T(-1,2)$
$(x, y) \rightarrow\left(\frac{1}{3} x, \frac{1}{3} y\right) \rightarrow(-x, y)$
$G(3,6) \rightarrow(1,2) \rightarrow T(-1,2)$ opinion

Yes; FGHJ maps to $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime} \mathrm{J}^{\prime}$ by a reflection : $(x, y) \rightarrow(-x, y)$. Then $F^{\prime} G^{\prime} H^{\prime} J^{\prime}$ maps to STUV by a dilation:
$(x, y)\left(\frac{1}{3} x, \frac{1}{3} y\right)$

Example 3:

Circle C can be mapped to circle C^{\prime} by a translation: $(x, y) \rightarrow(x+5, y+4)$. Circle C^{\prime} and circle D both have center $(5,1)$. Then circle C^{\prime} can be mapped to circle D by a dilation with center $(5,1)$ and scale factor 2.5 . So circle C and circle D are similar.

Pages 477-479
 14-26 even

