7-2

Similarity Transformations

To apply dilations in the coordinate plane To use transformations to show similarity

Example 1: Drawing and Describing Dilations

A. Apply the dilation *D* to the polygon with the given vertices. Describe the dilation.

D: $(x, y) \rightarrow (3x, 3y)$ A(1, 1), B(3, 1), C(3, 2)A'(3,3), B'(9,3), C'(9,6)

dilation with center (0, 0) and scale factor 3

Example 2 : Determining Whether Polygons are Similar

Determine whether the polygons with the given vertices are similar.

A.
$$A(-6, -6), B(-6, 3), C(3, 3),$$

 $D(3, -6) \text{ and } H(-2, -2),$
 $J(-2, 1), K(1, 1), L(1, -2)$
 $(x, y) \rightarrow (\frac{1}{2}x, \frac{1}{2}y)$
 $A(-6, -6) \rightarrow H(-2, -2)$

Yes; ABCD maps to HJKL by a dilation: $(x, y) \rightarrow (\frac{1}{3}x, \frac{1}{3}y)$

Example 2: Continued

H(9, 3)

10

J(9, -3)

8

Yes; FGHJ maps to F'G'H'J' by a reflection : (x, y) \rightarrow (-x, y). Then F'G'H'J' maps to STUV by a dilation:

 $(x, y)\left(\frac{1}{3}x, \frac{1}{3}\right)$

Example 3:

Circle C can be mapped to circle C' by a translation: $(x, y) \rightarrow (x + 5, y + 4)$. Circle C' and circle D both have center (5, 1). Then circle C' can be mapped to circle D by a dilation with center (5, 1) and scale factor 2.5. So circle C and circle D are similar.

HOMEWORK

Pages 477 - 479 14 - 26 even