7-1

Similar
Polygons

To identify and apply similar polygons

- Similar figures - figures that have the same shape but not necessarily the same size (similar symbol is \sim)

- Similar polygons - polygons with corresponding angles congruent and the lengths of the corresponding sides proportional.

VOCABULARY

Extended proportion - shows three or more ratios are equal:
If $\triangle A B C \sim \triangle X Y Z$
$\angle A \cong \angle X ; \angle B \cong \angle Y^{\prime}, \angle C \cong \angle 2$
$\frac{A B}{X Y}=\frac{B C}{Y Z}=\frac{A C}{X Z}$
A

Similarity Ratio (Scale factor) - ratio of corresponding linear measurements of two similar figures.

$$
\begin{array}{ll}
\text { figures. } & \frac{1}{2}=\frac{1.8}{X}
\end{array} \quad X=3.6
$$

- Scale drawing - all lengths in drawing are proportional to their actual lengths (examples: blueprint or map)
- Scale - ratio that compares each length in the drawing to the actual length. The lengths can be different units. (example: 1 inch = 5 miles)

List the pairs of congruent angles and the extended proportion that relates the corresponding sides for the similar polygons.

1. NPOM ~TQRS

$$
\angle N \cong \angle T_{i} \angle P \cong \angle Q ; \angle O \cong \angle R ; \angle M \cong \angle S
$$

Determine whether the polygons are similar. If so, write a similarity statement and give the scale factor. If not, explain.
2.

PMNO~RSTU

$$
\begin{aligned}
& \frac{3}{4.5}=\frac{3}{4.5}=\frac{3}{4.5}=\frac{3}{4.5} \\
& S F=\frac{3}{4.5}=\frac{30}{45}=\frac{2}{3}
\end{aligned}
$$

3.

$$
\frac{2.5}{2.5}=\frac{3}{3}=\frac{6}{9}=\frac{6.4}{9.6}
$$

$\frac{1}{1}=\frac{1}{1}+\frac{2}{3}=\frac{2}{3}$
4. Determine whether the polygons are similar: an equilateral triangle with side length 6 and an equilateral triangle with side length 15

$$
\frac{6}{15}=\frac{6}{15}=\frac{6}{15}
$$

5. An architect is making a scale drawing of a building. She uses the scale $1 \mathrm{in} .=15 \mathrm{ft}$.
a. If the building is 48 ft tall, how tall should the scale drawing be? $\frac{\operatorname{lin}}{15 f t}=\frac{x i n}{487 t} \quad \begin{aligned} & 15 x=48 \\ & x=3.2\end{aligned}$ b. If the building is 90 ft wide, how wide should the scale drawing be? $\frac{1 \text { in }}{15 \mathrm{ff}}=\frac{x \text { in }}{90 f t} x=90 \mathrm{ft}$.

CLASS WORK

In the diagram below, $\triangle P R Q \sim \triangle D E F$. Find each of the following.

9. Determine whether the polygons are similar:
a triangle with side lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm , and a triangle with side lengths $18 \mathrm{~cm}, 19 \mathrm{~cm}$, and 20 cm
10. A scale drawing of a building was made using the scale $15 \mathrm{~cm}=120 \mathrm{ft}$. If the scale drawing is 45 cm tall, how tall is the actual building?
9. Determine whether the polygons are similar:
a triangle with side lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm , and a triangle with side lengths $18 \mathrm{~cm}, 19 \mathrm{~cm}$, and 20 cm

$$
\frac{3}{18} \neq \frac{4}{19} \neq \frac{5}{20} \rightarrow \frac{1}{6} \neq \frac{4}{19} \neq \frac{1}{4} \quad \text { not~ }
$$

10. A scale drawing of a building was made using the scale $15 \mathrm{~cm}=120 \mathrm{ft}$. If the scale drawing is 45 cm tall, how tall is the actual building? $\frac{15 \mathrm{~cm}}{120 \mathrm{ft}}=\frac{45 \mathrm{~cm}}{x \mathrm{ft}} \quad x=360 \mathrm{ft}$

Find the value of y. Give the scale factor of the polygons.

11. $A B C D \sim T S V U$

Find the value of y. Give the scale factor of the polygons.

Determine whether each statement is always, sometimes, or never true.
12. Two squares are similar.
13. Two hexagons are similar.
14. Two similar triangles are congruent.
15. A rhombus and a pentagon are similar.

Determine whether each statement is always, sometimes, or never true.
12. Two squares are similar. always
13. Two hexagons are similar. sometimes
14. Two similar triangles are sometimes congruent.
15. A rhombus and a pentagon are similar.
-Similar polygons have congruent corresponding angles and proportional corresponding sides.
-The scale factor is the ratio of the corresponding sides.

Pages 469-471

$$
\begin{gathered}
8-12 \text { even } \\
13-17 \text { all } \\
20-28 \text { even }
\end{gathered}
$$

