$$
\begin{array}{r}
7-1,7-3 \\
707-5 \\
\text { Review and } \\
\text { Extension }
\end{array}
$$

To apply the Proportional Perimeters and Areas Theorem

To use proportions to plan scales

1. The parallelograms are similar. The area of smaller parallelogram $=72 \mathrm{ft}^{2}$. Find the area of the other parallelogram to the nearest whole number.

2. Find the scale factor and the ratio of perimeters for the following pair of similar figures.
two rectangles with areas $72 \mathrm{~m}^{2}$ and $50 \mathrm{~m}^{2}$
3. The parallelograms are similar. The area of smaller parallelogram $=72 \mathrm{ft}^{2}$. Find the area of the other parallelogram to the nearest whole number. $S R: \frac{14}{21}=\frac{\alpha}{3}=\frac{a}{b}$

$$
\frac{4}{9}=\frac{72}{A}
$$

14 ft

$R A: \frac{a^{2}}{b^{2}}=\frac{\partial^{2}}{3^{2}}=\frac{4}{9}$

$$
4 A=648 \quad A=162 \mathrm{ft}^{2}
$$

2. Find the scale factor and the ratio of perimeters for the following pair of similar figures.
two rectangles with areas $72 \mathrm{~m}^{2}$ and $50 \mathrm{~m}^{2}$

$$
R A: \frac{72}{50}=\frac{3 b}{25}=\frac{a^{2}}{b^{2}} \quad \frac{a}{b}=\frac{\sqrt{36}}{\sqrt{25}}=\frac{6}{5}=5 R=R P
$$

3. Find the value of x.

4. A student who is 5 ft . 6 in. tall measured shadows to find the height of a flagpole. What is the height?

5. Given $\triangle A B C \sim \triangle D E F$, find the perimeter and area of $\triangle A B C$.

6. Find the value of x.

$$
\begin{array}{ll}
\frac{6}{x}=\frac{4.5}{12} & 4.5 x=72 \\
x=16 f t
\end{array}
$$

4. A student who is 5 ft . 6 in. tall measured shadows to find the height of a flagpole. What is the height?

$$
\begin{aligned}
& \frac{66}{x}=\frac{60}{170} \\
& 60 x=11220 \\
& x=187 \mathrm{in} \\
& x=15 \mathrm{ft} 7 \mathrm{in}
\end{aligned}
$$

$$
S R=\frac{6.5}{13}=\frac{65}{130}=\frac{1}{2}
$$

5. Given $\triangle A B C \sim \triangle D E F, R P: \frac{1}{2}: \frac{P}{54} \quad 2 P: 54 \quad P=27$ in and area of $\triangle A B C$. $R A: \frac{12}{2^{2}}=\frac{1}{4} \frac{1}{4}=\frac{A}{126} 4 A=126$

$$
A=31.5 \mathrm{in}^{2}
$$

16. You want to enlarge a 4 in-by-6 in. photo. The paper you will print on is 8.5 in.-by-14 in. What is the largest size the photo can be?
17. You want to enlarge a 4 in-by- 6 in. photo. The paper you will print on is 8.5 in.-by-14 in. What is the largest size the photo can be? use all width
largest photo.

$$
\frac{4}{6}=\frac{8.5}{x} \quad 4 x=51
$$

8.5 in by 12.75 in
use all length

$$
\begin{aligned}
\frac{4}{6}=\frac{y}{14} \quad 6 & =56 \\
y & =\frac{28}{3}=9^{1 / 3} \\
& \text { too wide! }
\end{aligned}
$$

