TRAPEZOIDS AND KITES

TO VERIFY AND USE PROPERTIES OF TRAPEZOIDS AND KITES
 OBJECTIVE

KEY CONCEPT

Trapezoid - quadrilateral with exactly one pair of parallel sides

Properties of an Isosceles trapezoid: If a trapezoid is an isosceles trapezoid:

KEY CONCEPT

Properties of an Isosceles trapezoid: If a trapezoid is an isosceles trapezoid:

Source
\section*{then...}
Definition of isosceles trapezoid legs are congruent
Theorem 6-6-3 each pair of base angles is congruent

KEY CONCEPT

Properties of an Isosceles trapezoid: If a trapezoid is an isosceles trapezoid:

Source	then...
Definition of isosceles trapezoid	legs are congruent
Theorem 6-6-3	each pair of base angles is congruent
Theorem 6-6-5	diagonals are congruent

$$
\overline{A C} \cong \overline{B D}
$$

KEY CONCEPT

Trapezoid Midsegment Theorem:
If a quadrilateral is a trapezoid, then:

- the midsegment is parallel to the bases and
- the length of the midsegment is the average of the lengths of the bases.

If $\overline{M N}$ is the midsegment of trapezoid $A B C D$, then $B C\|M N\| A D$ and $M N=1 / 2(B C+A D)$

3.

Find the

 lengths of the segments with variable expressions.
KEY CONCEPT

Kite - quadrilateral with two pairs of consecutive sides congruent and no opposite sides congruent or parallel

KEY CONCEPT

Theorem 6-6-I:
If a quadrilateral is a kite, then its diagonals are perpendicular.
If $A B C D$ is a kite, then $\overline{A C} \perp \overline{B D}$

KEY CONCEPT

Theorem 6-6-2:
If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If $A B C D$ is a kite, then $\angle B \cong \angle D$.

$$
\begin{aligned}
& x^{200} \\
& 101+x+48+x=360 \\
& 2 x+149=360 \\
& 2 x=211 \\
& m \angle 1=m \angle 2=x=105.5
\end{aligned}
$$

5.

Find the measures of the numbered angles in each kite.

CLASS

a

7. Find the numbered angles.

8. Find the lengths of the segments with variable expressions.

7. Find the numbered angles.

8. Find the lengths of the segments with variable expressions.

$$
\begin{aligned}
4 x+7.5 & =\frac{1}{2}(8 x+3+4 x) \\
2(4 x+7.5) & =8 x+3+4 x \\
8 x+15 & =12 x+3 \\
12 & =4 x \\
3 & =x
\end{aligned}
$$

9. Find the numbered angles.
雨

10 . Find the value of the variables in the kite.

9. Find the numbered

 angles.$$
\begin{aligned}
44+x+80+x & =360 \\
2 x+124 & =360 \\
2 x & =236 \\
x & =118
\end{aligned}
$$

10 . Find the value of the variables in the kite.

$$
\begin{aligned}
8 x+5 x-1 & =90 \\
13 x & =91 \\
x & =7
\end{aligned}
$$

LEARNING RUBRIC

Got lt: Completes general proofs and uses proof to prove theorems about trapezoids
Almost There: Uses formulas with special parallelograms on the coordinate plane
Moving Forward: Applies the properties of trapezoids and kites to write equations to find segment lengths and angle measures
Getting Started: Applies the properties of trapezoids and kites to find segment lengths and angle measures

HOMEWORK

Pages 445-446:
14-22 even
$23-25$ all
28-36 even
-THE PARALLEL SIDES OF A
TRAPEZOID ARE ITS BASES AND THE NONPARALLEL SIDES AREITS LEGS.
-TWO ANGLES THAT SHAREA BASE OF A TRAPEZOID ARE BASE ANGLES. -THE MIDSEGMENT OF A TRAPEZOID JOINS THE MIDPOINTS OF ITS LEGS.
-IN AN ISOSCELES TRAPEZOID THE LEGS ARE CONGRUENT, THE EACH PAIR OF BASE ANGLES IS CONGRUENT, AND THE DIAGONALS ARE CONGRUENT.

SUMMARY

-A KITE HAS TWO PAIRS OF CONSECUTIVE SIDES
CONGRUENT. IT HAS NO PAIRS
OF PARALLEL SIDES.
-THE DIAGONALS OF A KITE ARE CONGRUENT.

SUMMARY

