PROVING RHOMBUSES, RECTANGLES, AND SQUARES

6-5

OBJECTIVE

TO CLASSIFY AND USE THE PROPERTIES OF SPECIAL TYPES OF PARALLELOGRAMS

KEY CONCEPTS

To prove a parallelogram is a rhombus:

Prove that one pair of consecutive sides are congruent. (Thm 6-5-3)

Prove the diagonals are perpendicular. (Thm 6-5-4)

Prove one diagonal bisects a pair of opposite angles. (Thm (6-5-5))

KEY CONCEPTS

To prove a parallelogram is a rectangle:

Prove that one of the angles is a right angle. (-5 - 1)

Prove the diagonals are congruent. $\overline{AC} \cong \overline{BD}$. (Thus (2-5-2)

To prove a square, you must be able to prove parallelogram, rectangle, and rhombus.

CLASSWORK

Can you conclude that the parallelogram is a rhombus, a rectangle, or a square? Explain.

CLASS WORK

For what 4. value of x is the parallelogram a rhombus?

 $7 \times -5 + 2 \times -13 + 90 = 190$ $7 \times -5 + 2 \times -13 = 90$ $9 \times -19 = 90$ $9 \times = 109$ X = 12

5.

CLASS WORK

For what value of x is the parallelogram a rectangle? (5x-3-5x)x = 3

$$4x - 12 + x + 2 = 90$$

5x - 10 = 90
5x = 100
x = 20

PROOF OF THEOREM 6-5-2

Given: EFGH is a parallelogram. $\overline{EG} \cong \overline{HF}$. Prove: EFGH is a rectangle.

τη

6

Statements	Reasons	
$EFGH$ is a parallelogram.; $\overline{EG} \cong \overline{HF}$	Given	F
$\overline{EF} \cong \overline{HG}$	In a parallelogram, opposite sides congruent	
$\overline{EH} \cong \overline{EH}$	Reflexive Property of Congruence	F
$\Delta FEH \cong \Delta GHE$	SSS Postulate	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>
$\angle FEH \cong \angle GHE$	CPCTC	2
$\angle FEH$ and $\angle GHE$ are supplementary	In a parallelogram, consecutive angles are suppl.	
∠ <i>FEH and ∠GHE</i> are right angles	Angles that are congruent and supplementary are right angles	
$\angle FEH \cong \angle FGH; \angle GFE \cong \angle GHE$	In a parallelogram, opposite angles are congruent	
$\angle FGH and \angle GFE$ are right angles	If an angle is congruent to a right angle it is a right angle	بر
EFGH is a rectangle	Definition of Rectangle	

EXIT PROBLEMS

Determine whether the parallelogram is a *rhombus*, a *rectangle*, or a *square*. Give the most precise description in each case.

- 8. A parallelogram has perpendicular diagonals and angle measures of 45, 135, 45, and 135.
- A parallelogram has perpendicular diagonals and angle measures that are all 90.
 Square
- 10. A parallelogram has congruent diagonals.

rectangle

LEARNING RUBRIC

Got It: Completes general proofs and uses proof to prove special parallelograms

Almost There: Uses formulas to prove special parallelograms on the coordinate plane

Moving Forward: Applies the properties of special parallelograms to find or check given values of variables that prove special parallelograms

Getting Started: Identifies correctly marked diagrams that prove special parallelograms

HOMEWORK

Pages 434 – 437 6 – 32 even 40