6-4

PROVING RHOMBUSES, RECTANGLES, AND SQUARES

OBJECTIVE

TO CLASSIFY AND

 USE THE PROPERTIES OF SPECIAL TYPES OF PARALLELOGRAMS
KEY CONCEPTS

To prove a parallelogram is a rhombus:

Prove that one pair of consecutive sides are congruent. (Thm 6-5-3)

Prove the diagonals are perpendicular.
(Thm 6-5 -4)

Prove one diagonal bisects a pair of opposite angles.
(Thm 6-5-5)

KEY CONC

To prove a parallelogram is a rectangle:
Prove that one of the angles is a right angle. (Thm $6-5-1$)

Prove the diagonals are congruent.
$\overline{A C} \cong \overline{B D}$. (Thm $6-5-2$)

To prove a square, you must be able to prove parallelogram, rectangle, and rhombus.

Can you conclude that the parallelogram is a rhombus, a rectangle, or a square? Explain.
I.

3.

2. $\overline{N P} \cong \overline{O Q}$

CLASS WORK

For what value of x is the a rhombus?

$$
\begin{aligned}
10 x & =110 \\
x & =11
\end{aligned}
$$

$$
\begin{aligned}
7 x-5+2 x-13+90 & =180 \\
7 x-5+2 x-13 & =90 \\
9 x-18 & =90 \\
9 x & =108 \\
x & =12
\end{aligned}
$$

CLASS WORK

For what value of x is the parallelogram a rectangle?

$$
\begin{gathered}
6 x-3=5 x \\
x=3
\end{gathered}
$$

6.

$$
\begin{aligned}
4 x-12+x+2 & =90 \\
5 x-10 & =90 \\
5 x & =100 \\
x & =20
\end{aligned}
$$

PROOF OF THEOREM 6-5-2

Given: $E F G H$ is a parallelogram. $\overline{E G} \cong \overline{H F}$. Prove: $E F G H$ is a rectangle.

Statements	Reasons
$E F G H$ is a parallelogram.; $\overline{E G} \cong \overline{H F}$	Given
$\overline{E F} \cong \overline{H G}$	In a parallelogram, opposite sides congruent
$\overline{E H} \cong \overline{E H}$	Reflexive Property of Congruence
$\triangle F E H \cong \triangle G H E$	SSS Postulate
$\angle F E H \cong \angle G H E$	CPCTC
$\angle F E H$ and $\angle G H E$ are supplementary	In a parallelogram, consecutive angles are suppl.
$\angle F E H$ and $\angle G H E$ are right angles	Angles that are congruent and supplementary are right angles
$\angle F E H \cong \angle F G H ; \angle G F E \cong \angle G H E$	In a parallelogram, opposite angles are congruent
$\angle F G H$ and $\angle G F E$ are right angles	If an angle is congruent to a right angle it is a right angle
$E F G H$ is a rectangle	Definition of Rectangle

EXIT PROBLEMS

Determine whether the parallelogram is a rhombus, a rectangle, or a square. Give the most precise description in each case.
8. A parallelogram has perpendicular diagonals and angle measures of 45, 135, 45 , and 135 . rhumbus
9. A parallelogram has perpendicular diagonals and angle measures that are all 90 .
square
10. A parallelogram has congruent diagonals.
rectangle

LEARNING RUBRIC

Got lt: Completes general proofs and uses proof to prove special parallelograms
Almost There: Uses formulas to prove special parallelograms on the coordinate plane
Moving Forward: Applies the properties of special parallelograms to find or check given values of variables that prove special parallelograms
Getting Started: Identifies correctly marked diagrams that prove special parallelograms

HOMEWORK

Pages 434-437
6-32 even
40

