

OBJECTIVES

-TO CLASSIFY POLYGONS BASED ON THEIR SIDES AND ANGLES -TO FIND AND USE THE INTERIOR AND EXTERIOR ANGLES OF POLYGONS

POLYGON REVIEW

Polygon - closed plane figure formed by three or more segments.

Diagonal - segment that connects two nonconsecutive vertices.

Convex polygon - no diagonal with points outside the polygon

Concave polygon - has at least one diagonal with points outside the polygon

POLYGON REVIEW

Naming a polygon - classify by the number of sides, then list each vertex.

Pentagon ABCDE

Number of Sides	Name of Polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	n-gon

KEY CONCEPT

Special Polygons:
Equilateral polygon:
Equiangular polygon:
all sides congruent

Regular Polygon:
Both sides and angles are congruent

KEY CONCEPT

Polygon Angle-Sum Theorem:
The sum of the measures of the interior angles of an n-gon is $180(n-2)$.

Decagon: 10 sides 180(I0-2) 180(8)

The sum of the interior angles is 1440°

CLASS work

Find the missing angle measures.

$$
\begin{aligned}
3 x+4(x+50) & =180(7-2) \\
3 x+4 x+200 & =180(5) \\
7 x+200 & =900 \\
7 x & =200 \\
x & =100
\end{aligned}
$$

KEY CONCEPT

Corollary to the Polygon Angle-Sum Theorem:
The measure of each interior angle of a regular n-gon is $180(n-2)$.
n

Heptagon: 7 sides
$\frac{180(7-2)}{7}=\frac{180(5)}{7}=\frac{900}{7}$
The measure of one interior angle is 128.6°.

KEY CONCEPT

Polygon Exterior Angle-Sum Theorem:

The sum of the measures of the exterior angles of a polygon, one at each vertex is 360°.

$a+b+c+d=360$

Regular polygon:
If all interior angles are the same, then all exterior angles will be the same, because each interior angle forms a linear pair with an exterior angle. What is the measure of each exterior angle of a regular heptagon?

$$
\begin{gathered}
180-128.6=51.4 \text { or } \\
\frac{360}{7}=51.4
\end{gathered}
$$

CLASS WORK
4. Find the measure of one angle in a regular 15-gon. Round to the nearest tenth if necessary. $\frac{180(15-2)}{15}=\frac{180(13)}{15}=156^{\circ}$
5. Find the measure of one exterior angle of a regular 72-gon. $\frac{360}{22}=5^{\circ}$

Find the sum of the angle measures of each polygon.
2.

$$
180(5-2)=540
$$

3. 102-gon $180(102-2)=18,000^{\circ}$
4. Find the value of x.

LEARNING RUBRIC

Got It: Calculates the interior and exterior angles of non-regular polygons

Almost There: Calculates the interior and exterior angles of regular polygons

Moving Forward: Correctly names polygons
Getting Started: Correctly classifies polygons

HOMEWORK

Pages 399-400
$16-42$ even
46

SUMMARY

-SUM OF INTERIOR ANGLES: $180(\mathrm{n}-2)$
-ONE INTERIOR ANGLE OF A REGULAR
POLYGON: DIVIDE ABOVE BY n
-SUM OF EXTERIOR ANGLES IS 360 DEGREES

