$$
\begin{array}{r}
5-8 \\
\text { Special Right } \\
\text { Triangles, }
\end{array}
$$

Find side lengths for special right triangles

OBJECTIVE

ALGEBRA REVIEW

Rationalize the denominator:

1. $\frac{5}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{5 \sqrt{3}}{3} \quad$ 2. $\frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}}{3}=\sqrt{3} 3 \cdot \frac{3}{2 \sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{3 \sqrt{5}}{2(5)}=\frac{3 \sqrt{5}}{10}$

KEY CONCEPT

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem:
In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle (isosceles right Δ), both legs are congruent and the length of the hypotenuse is $\sqrt{2}$ times the length of a leg.

Hypotenuse $=\sqrt{2} \bullet$ leg

$$
H_{y p}=\sqrt{2} \cdot \operatorname{leg}
$$

Find the value $y=\sqrt{2} \cdot 3.2$ of each variable. If your

$$
y=3.2 \sqrt{2}
$$ answer is not

 simple

$$
H_{y p}=\sqrt{2} \cdot \operatorname{leg}
$$

$$
y=11
$$

KEY CONCEPT

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem: In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is twice the length of the shorter leg. The length of the longer leg is $\sqrt{3}$ times the length of the shorter leg.

```
Hypotenuse \(=2\) • short leg
Long leg \(=\sqrt{3} \cdot\) short leg
```


6.

$$
H y p=2.5 L
$$

Find the value $14=2 \cdot 5 L$ of each $S L=7$
 variable. If your answer is not an integer, $\quad 7$. express it in simplest radical form. $L L=\sqrt{3} \cdot S L$

$$
\begin{gathered}
\frac{4 \sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3} \cdot S L}{\sqrt{3}} \\
S L=4
\end{gathered}
$$

WORK

Find the value $H_{y p}=\sqrt{2} \cdot$ leg of each

$$
18=\sqrt{2} \cdot y
$$

variable. If your $y=\frac{18}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{18 \sqrt{2}}{2}=9 \sqrt{2}$
answer is not an integer, express it in simplest radical form. Hyp =2.5L

$$
\begin{aligned}
36 & =2 \cdot x \\
x & =18
\end{aligned}
$$

10.

WORK Hyp $_{2}^{2}=\sqrt{2}$ leg $18 \sqrt{2}=\sqrt{2} \cdot a$
Find the value $a=18$ of each
variable. If your

$$
L=\sqrt{3} \cdot S L
$$

$H_{y p}=2 . S L$ answer is not an integer, express it in

$$
18=\sqrt{3}-S L
$$

$$
C=2(6 \sqrt{3})
$$

$$
S L=\frac{18}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{18 \sqrt{3}}{3} \quad C=12 \sqrt{3}
$$ simplest radical $S_{L}=6 \sqrt{3}$ form.

SUMMARY

$45^{\circ}-45^{\circ}-90^{\circ}$ triangle:
Hypotenuse $=\sqrt{2} \cdot 1$ leg
$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle:
Hypotenuse $=2 \cdot$ short leg Long leg $=\sqrt{3} \cdot$ short leg

LEARNING RUBRI

- Got It: To use special right triangle theorems to solve complex/real-world problems
- Almost There: To rationalize the denominator when using special right triangle theorems to find side lengths in triangles
- Moving Forward: To use special right triangle theorems to find side lengths in triangles
- Getting Started: To use the Pythagorean Theorem to find side lengths in 45-45-90 triangles

WS: 5-8 Practice (side 1) HOMEWORK

