5-8 Special Right Triangles

Find side lengths for special right triangles

OBJECTIVE

ALGEBRA REVIEW

Rationalize the denominator:

$$1. \frac{5}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{3} \qquad 2. \frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{3}}{\sqrt{3}} \cdot \sqrt{3} \cdot \frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \cdot \frac{3\sqrt{3}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{$$

KEY CONCEPT

45°-45°-90° Triangle Theorem:

In a 45°-45°-90° triangle (isosceles right Δ), both legs are congruent and the length of the hypotenuse is $\sqrt{2}$ times the length of a leg.

KEY CONCEPT

30°-60°-90° Triangle Theorem:

In a 30°-60°-90° triangle, the length of the hypotenuse is twice the length of the shorter leg. The length of the longer leg is $\sqrt{3}$ times the length of the shorter leg.

Hypotenuse = $2 \cdot \text{short leg}$ Long leg = $\sqrt{3} \cdot \text{short leg}$

CLASS WORK Hyp=2.5L Find the value 14-2.5L 5L-7 of each variable. If your answer is not an integer, express it in simplest radical form. $LL = \sqrt{3} \cdot SL$ 413=13-SL=L

CLASS WORK

45° Find the value Hyp= V2.leg of each 18=V2·Y variable. If your $y = \frac{18}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{18\sqrt{2}}{2} = 9\sqrt{2}$ answer is not 9. an integer, express it in X simplest radical 60° form. Hyp=2.5L 30° 36-2.X 36 $\chi = 18$

18

45°

8.

10. CLASS **18**√2. WORK Hyp=Ta.leg 18va=Va·a a 18 **~**45° 60° Find the value ^{\$218} 613 of each variable. If your LL= 13.5L Hyp=2.SL answer is not $C = 2(6\sqrt{3})$ 18=13-5L an integer, SL= 18 13 1805 C=1213 express it in simplest radical SL= 63 form.

SUMMARY

45°-45°-90° triangle: Hypotenuse = $\sqrt{2} \cdot \log$ 30°-60°-90° Triangle: Hypotenuse = 2 • short leg Long leg = $\sqrt{3}$ • short leg

LEARNING RUBRIC

- Got It: To use special right triangle theorems to solve complex/real-world problems
- Almost There: To rationalize the denominator when using special right triangle theorems to find side lengths in triangles
- Moving Forward: To use special right triangle theorems to find side lengths in triangles
- Getting Started: To use the Pythagorean Theorem to find side lengths in 45-45-90 triangles

WS: 5-8 Practice (side 1) HOMEWORK