PERPENDICULAR AND ANGLE BISECTORS

5-1

To use properties of perpendicular bisectors and angle bisectors

 To prove and apply theorems about perpendicular bisectors and angle bisectors
 OBJECTIVES

KEY CONCEPTS

Perpendicular bisector of a triangle – is a segment that bisects a side and is perpendicular to that side

IF AD = DB, and $\overline{ED} \perp \overline{AB}$, Then \overline{ED} is a perpendicular bisector of $\triangle ABC$

VOCABULARY

Equidistant – A point is equidistant from two objects if it is the same distance from the objects.

IF AM = MB, then point M is equidistant from points A and B.

KEY CONCEPT

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

A M B

Perpendicular Bisector Theorem

CONVERSE:

If *P* lies on the perpendicular bisector of \overline{AB} , ($\overrightarrow{PM} \perp \overline{AB}$ and $\overline{MA} \cong \overline{MB}$), then $\overline{PA} \cong \overline{PB}$. If $\overline{PA} \cong \overline{PB}$,

then P lies on the perpendicular bisector of \overline{AB} .

VOCABULARY

Angle bisector of a triangle – a segment that bisects an angle of a triangle

IF $\angle ACD \cong \angle DCB$, then \overline{CD} is an angle bisector of $\triangle ABC$

VOCABULARY

Distance from a point to a line – the length of the perpendicular segment from the point to the line. This is the shortest segment from the point to the line.

IF $\overline{CA} \perp \overrightarrow{AB}$, then \overline{CA} represents the distance from point C to \overrightarrow{AB} .

KEY CONCEPT

CLASS WORK

Prove the Angle Bisector Theorem Given: \overrightarrow{QS} bisects $\angle PQR$, $\overrightarrow{SP} \perp \overrightarrow{QP}$, $\overrightarrow{SR} \perp \overrightarrow{QR}$ **Prove:** SP = SR

Statements	Reasons
1) \overrightarrow{QS} bisects $\angle PQR$, $\overrightarrow{SP} \perp \overrightarrow{QP}$, $\overrightarrow{SR} \perp \overrightarrow{QR}$	1) Given
2)	2)
3)	3)
4)	4)
5)	5)
6)	6)
7)	7)
8)	8)

CLASS WORK

Prove the Angle Bisector Theorem Given: \overrightarrow{QS} bisects $\angle PQR$, $\overrightarrow{SP} \perp \overrightarrow{QP}$, $\overrightarrow{SR} \perp \overrightarrow{QR}$ **Prove:** SP = SR

Statements	Reasons
1) \overrightarrow{QS} bisects $\angle PQR$, $\overrightarrow{SP} \perp \overrightarrow{QP}$, $\overrightarrow{SR} \perp \overrightarrow{QR}$	1) Given
2) $\angle PQS \cong \angle RQS$	2) Definition of angle bisector.
3) \angle QPS and \angle QRS are right angles.	3) Definition of perpendicular.
$4) \angle QPS \cong \angle QRS$	4) All right angles are congruent.
5) $\overline{QS} \cong \overline{QS}$	5) Reflexive property of \cong .
6) $\Delta QPS \cong \Delta QRS$	6) AAS Theorem
7) $\overline{SP} \cong \overline{SR}$	7) CPCTC
8) SP = SR	8) Definition of congruent seg.

CLASS WORK Use the figure below for Exercises 1–3.

1. What is the relationship between \overline{LN} and \overline{MO} ?

2. What is the value of x? 5x=3x+20 2x=20 x=10
3. Find LM. LM=L0=5(10)=50

CLASS WORK Use the figure below for Exercises 4 - 8.

4. According to the figure, how far is A from \overline{CD} ? from \overline{CB} ? 15 **5.** How is \overrightarrow{CA} related to ∠DCB? Explain.∠ bisector **6.** Find the value of $x_3 x_3 - 2 x_3 - 2 x_3$ x = 29**7.** Find $m \angle ACD$ and $m \angle ACB.$ mLACD = mLACB = 2(29) = 58° **8.** Find $m \angle DAC$ and $m \angle BAC$. $m \angle DAC = m \angle BAC = 90 - 58 = 32^{\circ}$

CLASS WORK Find the indicated variables and measures. 9. *x*, *BA*, *DA* **10.** *x*, *TU*, *UV*

$$\begin{aligned}
 x - 17 &= 3x + 9 \\
 4x &= 26 \\
 x &= 6.5 \\
 3x + 9 \\
 x + 9 \\
 7x - 17 \\
 x &= 5 \\
 7x - 17 \\
 x &= 5 \\
 WV V$$

EXIT PROBLEM

Write an equation in slope-intercept form for the perpendicular bisector of the segment with endpoints C(6,-5) and D(10,1)

- The Perpendicular Bisector Theorem together with its converse states that P is equidistant from A and B if and only if P is on the perpendicular bisector of \overline{AB} .
- 2. The Angle Bisector Theorem together with its converse states that P is equidistant from the sides of an angle if and only if P is on the angle bisector.

SUMMARY

LEARNING RUBRIC

- Got It: Proves Perpendicular Bisector and Angle Bisector Theorems
- Almost There: Write equations for perpendicular bisectors of line segments
- Moving Forward: Applies the Perpendicular Bisector and the Angle Bisector Theorems to problem solving
- Getting Started: Identifies perpendicular bisectors and angle bisectors

HOMEWORK

Pages 316 – 318 12 – 28 even; 33, 36