PERPENDICULAR AND ANGLE BISECTORS

To use properties of

 perpendicular bisectors and angle bisectors To prove and apply theorems about perpendicular bisectors and angle bisectors
KEY CONCEPTS

Perpendicular bisector of a triangle - is a segment that bisects a side and is perpendicular to that side

VOCABULARY

Equidistant - A point is equidistant from two objects if it is the same distance from the objects.

IF $A M=M B$, then
point M is equidistant from points A and B.

KEY CONCEPT

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

Perpendicular Bisector Theorem

CONVERSE:

If P lies on the perpendicular bisector of $\overline{A B},(\stackrel{\rightharpoonup P M}{A B}$ and $M A \cong M B)$, then $P A \cong P B$.

$$
\text { If } \overline{P A} \cong \overline{P B},
$$

then P lies on the perpendicular bisector of $\overline{A B}$.

VOCABULARY

Angle bisector of a triangle - a segment that bisects an angle of a triangle

IF $\angle A C D \cong \angle D C B$, then $\overline{C D}$ is an angle bisector of $\triangle A B C$

VOCABULARY

Distance from a point to a line - the length of the perpendicular segment from the point to the line. This is the shortest segment from the point to the line.

IF $\overline{C A} \perp \overleftrightarrow{A B}$, then $\overline{C A}$ represents the distance from point C to $\overleftrightarrow{A B}$.

KEY CONCEPT

If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.

Angle Bisector

Theorem

CONVERSE:

If $\overrightarrow{A C}$ bisects $\angle D A B$,
$\overline{C D} \perp \overrightarrow{A D}$, and $\overline{C B} \perp \overrightarrow{A B}$, Then $\overline{C D} \cong \overline{C B}$.

$$
\begin{aligned}
& \text { If } \overline{C D} \perp \overrightarrow{A D}, \overline{C B} \perp \overrightarrow{A B}, \\
& \text { and } \overline{C D} \cong \overline{C B},
\end{aligned}
$$

then $\overrightarrow{A C}$ bisects $\angle D A B$.

Prove the Angle Bisector Theorem
Given: $\overrightarrow{\boldsymbol{Q S}}$ bisects $\angle \mathrm{PQR}, \overline{S P} \perp \overrightarrow{Q P}, \overrightarrow{S R} \perp \overrightarrow{Q R}$
Prove: SP = SR

Statements	Reasons
1) $\overrightarrow{Q S}$ bisects $\angle \mathrm{PQR}, \overline{S P} \perp \overrightarrow{Q P}, \overline{S R} \perp \overrightarrow{Q R}$	1) Given
2)	2)
3)	3)
4)	4)
5)	5)
6)	$6)$
7)	7)
8)	$8)$

CLASS WORK

Prove the Angle Bisector Theorem

Given:. $\overrightarrow{Q S}$ bisects $\angle \mathrm{PQR}, \overline{S P} \perp \overrightarrow{Q P}, \overline{S R} \perp \overrightarrow{Q R}$
Prove: SP = SR

Statements	Reasons
1) $\overrightarrow{Q S}$ bisects $\angle \mathrm{PQR}, \overline{S P} \perp \overrightarrow{Q P}, \overline{S R} \perp \overrightarrow{Q R}$	1) Given
2) $\angle \mathrm{PQS} \cong \angle \mathrm{RQS}$	2) Definition of angle bisector.
3) $\angle \mathrm{QPS}$ and $\angle \mathrm{QRS}$ are right angles.	3) Definition of perpendicular.
4) $\angle \mathrm{QPS} \cong \angle \mathrm{QRS}$	4) All right angles are congruent.
5) $\overline{Q S} \cong \overline{Q S}$	5) Reflexive property of \cong.
6) $\Delta \mathrm{QPS} \cong \Delta \mathrm{QRS}$	6) AAS Theorem
7) $\overline{S P} \cong \overline{S R}$	7) CPCTC
8) $\mathrm{SP}=\mathrm{SR}$	8) Definition of congruent seg.

CLASS WORK

Use the figure below for Exercises 1-3.

1. What is the relationship between $\overline{L N}$ and $\overline{M O}$?
\perp bisectors
2. What is the value of

$$
\begin{aligned}
x ? \quad 5 x & =3 x+20 \\
2 x & =20 \\
x & =10
\end{aligned}
$$

3. Find $L M$.

$$
L m=L 0=5(10)=50
$$

CLASS WORK

Use the figure below for Exercises 4-8.
4. According to the
figure, how far is A
from $\overline{C D}$? from $\overline{C B}$? 15
5. How is $\overrightarrow{C A}$ related to $\angle D C B$? Explain. \angle bisector 6. Find the value of $x .3 x-29=2 x$ 7. Find $m \angle A C D$ and $x=29$
$m \angle A C B . m \angle A C D=m \angle A C B=2(28)=58^{\circ}$
8. Find $m \angle D A C$ and

$m \angle B A C$.

$$
m \angle D A C=m \angle B A C=90-58=32^{\circ}
$$

CLASS WORK

Find the indicated variables and measures.
9. $x, B A, D A$

C
10. $x, T U, U V$

EXIT PROBLEM
Write an equation in slope-intercept form for the perpendicular bisector of the segment with endpoints $C(6,-5)$ and $D(10,1)$

$$
\begin{aligned}
& \text { Segment } C D \quad \perp \text { bisector } \quad y-y_{1}=m\left(x-x_{1}\right) \\
& m=\frac{1+5}{10-6}=\frac{6}{4}=\frac{3}{2} \\
& m=-\frac{2}{3} \\
& y+2=-\frac{2}{3}(x-8) \\
& \begin{array}{r}
\operatorname{midpt}\left(\frac{6+10}{2}, \frac{-5+1}{2}\right) \rightarrow\binom{(8,-2)}{x, y,}
\end{array} \\
& \begin{array}{c}
y \div 2 \\
-2
\end{array}=-\frac{2}{3} x+\frac{16}{3}-\frac{6}{3} \\
& y=-\frac{2}{3} x+\frac{10}{3}
\end{aligned}
$$

The Perpendicular Bisector Theorem together with its converse states that P is equidistant from A and B if and only if P is on the perpendicular bisector of $\overline{A B}$.

The Angle Bisector Theorem together with its converse states that P is equidistant from the sides of an angle if and only if P is on the angle bisector.

LEARNING RUBRIC

- Got It: Proves Perpendicular Bisector and Angle Bisector Theorems
- Almost There: Write equations for perpendicular bisectors of line segments
- Moving Forward: Applies the Perpendicular Bisector and the Angle Bisector Theorems to problem solving
- Getting Started: Identifies perpendicular bisectors and angle bisectors

HOMEWORK

Pages 316-318
12-28 even;
33, 36

