4-9 Isosceles and Equilateral Triangles

To use and apply theorems about isosceles and

 equilateral triangles
OBJECTIVE

KEY CONCEPT
 C

isosceles
Triangle
Theorem

If $\overline{A C} \cong \overline{B C}$, then $\angle A \cong \angle B$.

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

KEY CONCEPT

converse of the
 isosceles

Triangle A Theorem

KEY CONCEPT

corollary to
isosceles
Triangle Theorem

$$
\begin{aligned}
& \text { If } \overline{A B} \cong \overline{B C} \cong \overline{A C}, \\
& \text { then } \angle A \cong \angle B \cong \angle C .
\end{aligned}
$$

If a triangle is equilateral, then the triangle is equiangular.

KEY CONCEPT

If a triangle is equiangular, then the triangle is equilateral.

CLASS WORK

1.

For 1 and 3, Find the values of all variables.

2. Find $m \angle A C B$.

EXIT PROBLEMS

4.

5. Find $m \angle A B C$.

6.

EXIT PROBLEMS

4.

5. Find $m \angle A B C$.

6.

LEARNING RUBRIC

- Got It: Applies concepts to prove congruence and find angle measures in complex/real world situations
- Almost There: Represents and applies concepts to solve for angle measures
- Moving Forward: Solves for interior and exterior angle measures in more complex situations that are represented
- Getting Started: Solves for interior and exterior angles in simple, represented settings
>If two sides of a triangle are congrue then the angles opposite those sides ar congruent.
>If two angles of a triangle are congruen then the sides opposite those angles are congruent.
>Equilateral triangles are also equiangular.

HOMEWORK

Pages 289-291:
12-28 even;
34-44 even

