4-6 Triangle Congruence by ASA, AAS, and HL

- 1. to apply the ASA postulate, the AAS Theorem and the HL Theorem in problem solving
- 2. to prove two triangles congruent using the ASA postulate, the AAS Theorem and the HL Theorem

OBJECTIVES

EXTRA PROBLEM

Given: \overline{BD} is the perpendicular bisector of \overline{AC} .

Prove: $\triangle BAD \cong \triangle BCD$

A	_	
卢	\rightarrow	- B
t		

Statements	Reasons

EXTRA PROBLEM

Given: \overline{BD} is the perpendicular bisector of \overline{AC} .

Prove: $\triangle BAD \cong \triangle BCD$

Statements	Reasons
1) \overline{BD} is the perpendicular bisector of \overline{AC}	1) Given
2) $\overline{AD} \cong \overline{CD}$	2) Definition of bisector
3) $\angle ADB$ and $\angle CDB$ are right angles.	3) Definition of ⊥
$4) \angle ADB \cong \angle CDB$	4) All right angles are congruent.
5) $\overline{DB} \cong \overline{DB}$	5) Reflexive property of \cong
6) $\Delta BAD \cong \Delta BCD$	6) SAS Postulate

KEY CONCEPT

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent.

KEY CONCEPT

If two angles and a nonincluded side of one triangle are congruent to two angles and the corresponding nonincluded side of another triangle, then the triangles are congruent

CLASS WORK

Given: $\angle LOM \cong \angle NPM, \overline{NM} \cong \overline{LM}$ **Prove:** $\Delta LOM \cong \Delta NPM$

Statements	Reasons
$1. \angle LOM \cong \angle NPM; \overline{NM} \cong \overline{LM}$ $2. \angle LMO \cong \angle NMP$ $3. \Delta LOM \cong \Delta NPM$	 Given Vertical angles theorem AAS Theorem

VOCABULARY

Parts of a Right Triangle:

CLASS WORK

Complete the proof.

Given: $\angle V$ and $\angle W$ are right angles

and $\overline{WZ} \cong \overline{VX}$ **Prove:** $\triangle WVZ \cong \triangle VWX$

Statements		Reasons
1)	$\angle V \And \angle W$ are right angles; $\overline{WZ} \cong \overline{VX}$	1) Given
2)	ΔWVZ and ΔVWX are right triangles	2) Definition of right triangles
3)	$\overline{VW} \cong \overline{VW}$	3) Reflexive property of congruence
4)	$\Delta WVZ \cong \Delta VWX$	4) HL Theorem

EXIT PROBLEM

Given: \overline{JM} bisects $\angle J$. $\overline{JM} \perp \overline{KL}$ **Prove:** $\Delta JMK \cong \Delta JML$

Statements

Reasons

1. \overline{JM} bisects $\angle J$; $\overline{JM} \perp \overline{KL}$ 2. $\angle KJM \cong \angle LJM$ 3. $\angle JML$ and $\angle JMK$ are right angles 4. $\angle JML \cong \angle JMK$ 5. $\overline{JM} \cong \overline{JM}$ 6. $\Delta JMK \cong \Delta JML$

1. Given

- 2. Definition of angle bisector
- 3. Definition of perpendicular
- 4. All right angles are congruent

κ

- 5. Reflexive property of \cong
- 6. ASA Postulate

Two prove triangles congruent you can have

- 1. Three sides (SSS)
- 2. Two sides and the included angle (SAS)
- 3. Two angles and an included side (ASA)
- 4. Two angles and a nonincluded side(AAS)
- 5. Right triangles only: hypotenuse leg (HL)

SUMMARY

LEARNING RUBRIC

- Got It: Proves congruent triangles using proofs with complex diagrams/less direct congruence given
- Almost There: Proves congruent triangles using proofs with simple diagrams/mostly direct congruence given
- Moving Forward: Informally identifies the reason for congruent triangles
- Getting Started: Identifies included angles

HOMEWORK

Pages 265 - 266 11 - 17 all; 19, 22, 23, 26, 28