4-4
 Congruent Figures

OBJECTIVE

- To use the properties of congruent polygons
- To prove polygons congruent using the definition of congruence

VOCABULARY

Congruent polygons - polygons that have the same size and shape.

They may be rotated flipped or moved, but if they were cut out, they would fit on top of each other exactly.

VOCABULARY

The congruence statement is written by matching up the congruent parts.

$$
A B C D \cong Y Z W X
$$

$$
\begin{array}{ll}
\angle A \cong \angle Y & \overline{A B} \cong \overline{Y Z} \\
\angle B \cong \angle Z & \overline{B C} \cong \overline{Z W} \\
\angle C \cong \angle W & \overline{C D} \cong \overline{W X} \\
\angle D \cong \angle X & \overline{A D} \cong \overline{Y X}
\end{array}
$$

Z

Is $W X Y Z \cong C D A B ?$

CLASS

Can you conclude that the triangles are congruent? Justify your answers.
$\angle G J H \cong \angle I J H 3$ rd $\angle S T h m$
$\overline{G I} \cong \overline{I J} ; \overline{G H} \cong \bar{I} H$ Given
TH \cong JH Reflexive prop off

Def of \cong polygons (Δ)

CLASS WORK

Find the value of x. Find $m \angle D B C$.

$$
\begin{aligned}
2 x-16 & =90 \\
2 x & =106 \\
x & =53
\end{aligned}
$$

$$
m \angle D B C=90-49.3=40.7^{\circ}
$$

CLASS

WORK

Find x .

$$
\begin{aligned}
5 x+74+3 x+2 & =180 \\
8 x+76 & =180 \\
8 x & =104 \\
x & =13
\end{aligned}
$$

CLASS

$A B C D \cong F G H J$.
Find the
measures of the given angles.

$$
\begin{array}{ll}
3 y=y+50 & 3(25)=75 \\
-y \mid-y & m \angle B=75 \\
\frac{2 y}{2}=\frac{50}{2} & 25+50=75 \\
y=25 & m<G=75
\end{array}
$$

CLASS WORK

$$
\begin{array}{ll}
M & O \\
3 x^{2}=x^{2}+50 \\
2 x^{2}=50 \\
x^{2}=25 \\
x= \pm 5
\end{array}
$$

CLASS WORK

5. Given: $\bar{A} B \cong B C ; \angle A \cong \angle C$;
$\overline{\mathrm{BD}}$ is the angle bisector of $\angle \mathrm{ABC}$;
D is the midpoint of $\overline{A C}$.
Prove: $\triangle A B D \cong \triangle C B D$
(1) 1 $\overline{B D}$ is the angle bisector of $\angle \mathrm{ABC}$
1) $\overline{A B} \cong \overline{B C} ; \angle \mathrm{A} \cong \angle \mathrm{C}$ D is the midpoint of $\overline{A C}$
(2) 2) $\angle A B D \cong \angle C B D$
2) $\angle A D B \cong \angle C D B$
3) $\overline{A D} \cong \overline{C D}$
4) $\overline{B D} \cong \overline{B D}$
5) $\triangle A B D \cong \triangle C B D$

Statements

Reasons

1) Given
2) Definition of angle bisector
3) Third angles theorem
4) Definition of midpoint
5) Reflexive property of \cong
6) Definition of congruent polygons

CLASS WORK

6. Given: $\overline{P R}$ and $\overline{Q T}$ bisect each other. $\angle P Q S \cong \angle R T S, \overline{Q P} \cong \overline{R T}$ Prove: $\triangle Q P S \cong \triangle T R S$

Statements

1) $\overline{Q P} \cong \overline{R T} ; \angle \mathrm{PQS} \cong \angle \mathrm{RTS}$
$\overline{P R}$ and $\overline{Q T}$ bisect each other
2) $\overline{P S} \cong \overline{R S} ; \overline{Q S} \cong \overline{T S}$
3) $\angle Q S P \cong \angle T S R$
4) $\angle Q P S \cong \angle T R S$
5) $\triangle A B D \cong \triangle C B D$

Reasons

1) Given
2) Definition of segment bisector
3) Vertical angles theorem
4) Third angles theorem
5) Definition of congruent polygons

LEARNING RUBRIC

- Got It: Applies concepts to prove congruent polygons in complex/real world situations
- Almost There: Represents and applies concepts to solve for angle measures in simple/complex problems
- Moving Forward: Solves for congruent angle measures in more complex represented problems
- Getting Started: Solves for congruent angle measures in simple represented problems

SUMMARY

*Congruent polygons are the same size and shape.
*They have congruent corresponding parts.

HOMEWORK

Pages 243-245:
13-19 all;
24, 32, 34, 36

