4-4 Congruent Figures

OBJECTIVE

- To use the properties of congruent polygons
- To prove polygons congruent using the definition of congruence

VOCABULARY

Congruent polygons - polygons that have the same size and shape.

Α

D

B

Х

W

Ζ

They may be rotated flipped or moved, but if they were cut out, they would fit on top of each other exactly.

VOCABULARY

The congruence statement is written by matching up the congruent parts. $ABCD \cong YZWX$

CLASS WORK

1. $\triangle GHJ$ and $\triangle IHJ$

G

Can you conclude that the triangles are congruent? Justify your answers.

LG=LI Sciven LGJH=LIJH 3rdLsThm GJ=IJ; GH=IH Given JH=JH Reflexive propof=

Def of = polygons (A)

DEHJ SOIHJ

CLASS WORK

² Given: $\triangle ABC \cong \triangle DBC$

Find the value of x. Find m∠*DBC*.

2x - 16 = 902x = 106x = 53

mLDBC = 90 - 49.3 = 40.7

CLASS WORK

4. $m \angle B = 3y, m \angle G = y + 50$

 $ABCD \cong FGHJ.$ Find the measures of the given angles.

CLASS WORK

5. Find $m \angle N$ and $m \angle P$

 $3x^{2} = x^{2} + 50$ $2x^{2} = 50$ $\chi^{2} = 25$ $\chi = \pm 5$

CLASS WORK

5. Given: $\overrightarrow{AB} \cong BC$; $\angle A \cong \angle C$; BD is the angle bisector of $\angle ABC$; D is the midpoint of \overline{AC} .

Prove: $\triangle ABD \cong \triangle CBD$

Statements	Reasons		-
$(1) \ \overline{AB} \cong \overline{BC}; \angle A \cong \angle C$ $\overline{BD} \text{ is the angle bisector of } \angle ABC$	1) Given		
D is the midpoint of \overline{AC} (a) 2) $\angle ABD \cong \angle CBD$ (b) $\angle ADB \cong \angle CDB$ (c) 3) $\angle ADB \cong \angle CDB$ (c) 4) $\overline{AD} \cong \overline{CD}$ (c) 5) $\overline{BD} \cong \overline{BD}$ (c) $\triangle ABD \cong \triangle CBD$	3) Third ang4) Definition5) Reflexive	n of angle bisector gles theorem n of midpoint property of ≅ n of congruent polygo	ns

CLASS WORK

6. **Given:** \overline{PR} and \overline{QT} bisect each other. $\angle PQS \cong \angle RTS$, $\overline{QP} \cong \overline{RT}$ **Prove:** $\triangle QPS \cong \triangle TRS$

Statements	Reasons
1) $\overline{QP} \cong \overline{RT}$; $\angle PQS \cong \angle RTS$ \overline{PR} and \overline{QT} bisect each other 2) $\overline{PS} \cong \overline{RS}$; $\overline{QS} \cong \overline{TS}$ 3) $\angle QSP \cong \angle TSR$ 4) $\angle QPS \cong \angle TRS$ 5) $\triangle ABD \cong \triangle CBD$	 Given Definition of segment bisector Vertical angles theorem Third angles theorem Definition of congruent polygons

LEARNING RUBRIC

- Got It: Applies concepts to prove congruent polygons in complex/real world situations
- Almost There: Represents and applies concepts to solve for angle measures in simple/complex problems
- Moving Forward: Solves for congruent angle measures in more complex represented problems
- Getting Started: Solves for congruent angle measures in simple represented problems

SUMMARY

Congruent polygons are the same size and shape.

They have congruent corresponding parts.

HOMEWORK

Pages 243 - 245: 13 - 19 all; 24, 32, 34, 36