4-3 Angle Relationships in Triangles

OBJECTIVES

 To find the measures of interior and exterior angles o triangles

 To apply theorems about the interior and exterior angles of triangles

Given: $\triangle ABC$ Prove: $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$

Proof:

Proof of Triangle Angle Sum Theorem

VOCABULARY

Exterior angle of a polygon - angle formed by a side and an extension of an adjacent side

1

VOCABULARY

4

B

Remote interior angles - the two nonadjacent interior angles of an exterior angle

PROOF OF EXTERIOR ANGLE THEOREM

Given. DADC with exterior angle ZACD	/	1
Prove: $m \angle ACD = m \angle A + m \angle B$	вĽ	

Civon: AARC with oxtorior and ACD

Statements	Reasons	

AA

 \bar{C}

Given: $\triangle ABC$ with exterior angle $\angle ACD$ Prove: $m \angle ACD = m \angle A + m \angle B$

Statements	Reasons
DABC with exterior LACD	Given
mLA+mLB+ mLACB=180	AL Sum Thm
mLACB+mLACD=180	Lin. Pair Thm.
MLACB+MLACD = MLA+MLB+MLACB	Trans. Prop of = (Subst.)
mLACD=mLA+mLB	Subtr. prop. of =

PROOF OF EXTERIOR ANGLE THEOREM

If two angles of one triangle are congruent to two angles of another triangle, then the third pair of angles are congruent.

> Third Angles Theorem

If $\angle A \cong \angle D$ and $\angle B \cong \angle E$,

then $\angle C \cong \angle F$

В

1. Find each missing angle measure.

1. Find each missing angle measure.

mL3 + 72 + 86 = 180 mL3 + 158 = 180 mL3 = 22mL4 = mL3 = 22 mL5=180-70-22=88

2. The measure of one angle in a triangle is 61°. The other two angles are in a ratio of 2:5. Find the measures of the angles.

2. The measure of one angle in a triangle is 61°. The other two angles are in a ratio of 2:5. Find the measures of the angles.

2x+5x+61=180 7x+61=180 7x=119 x=17

3. Find the value of x and the measures of the acute angles.

3. Find the value of x and the measures of the acute angles.

4. Find *m∠ABD*.

CHALLENGE

6. Find the value of each variable.

CHALLENGE

6. Find the value of each variable.

Z = 180 - 84 - 50 = 416 Y = 180 - 416 = 134X = 180 - 13 - 134 = 33

LEARNING RUBRIC

- Got It: Applies concepts to prove congruence and find angle measures in complex/real world situations
- Almost There: Represents and applies concepts to solve for angle measures
- Moving Forward: Solves for interior and exterior angle measures in more complex situations that are represented
- Getting Started: Solves for interior and exterior angles in simple, represented settings

The sum of the measures of a triangle is 180°.

The measure of each exterior angle of a triangle equals the sum of the measures of its two remote interior angles.

SUMMARY

HOMEWORK

Pages 236 - 238:

- 16 26 even;
- 30 36 even;

38, 40