

OBJECTIVES

To find the measures of interior and exterior angles triangles

* To apply theorems about
the interior and exterior angles of triangles

KEY CONCEPTS

The sum of the measures of the angles of a triangle is 180 .

$$
\begin{aligned}
& m \angle A+m \angle B+m \angle C \\
& =180
\end{aligned}
$$

$$
\begin{gathered}
20+x+87=180 \\
x+107=180 \\
x=73
\end{gathered}
$$

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$

Proof:

Proof of Triangle Angle Sum Theorem

KEY CONCEPTS

The acute angles of a right triangle are complementary.

Corollary

4-3-2
$\angle A$ and $\angle C$ are complementary.

$$
\begin{gathered}
m \angle A+m \angle C=90 \\
54+x=90 \\
x=36
\end{gathered}
$$

KEY CONCEPTS

The measure of each angle of an equiangular triangle is 60°.
$\angle A \cong \angle B \cong \angle C$

$$
m \angle A=m \angle B=m \angle C=
$$

VOCABULARY

Exterior angle of a polygon - angle formed by a side and an extension of an adjacent side

VOCABULARY

Remote interior angles - the two nonadjacent interior angles of an exterior angle

KEY CONCEPTS

The measure of each exterior angle of a triangle equals the sum of the measures of its two remote interior angles.

Theorem

$$
m \angle 1=m \angle A+m \angle B
$$

$$
\begin{gathered}
m \angle 1=20+93 \\
m \angle 1=113
\end{gathered}
$$

Given: $\triangle A B C$ with exterior angle $\angle A C D$ Prove: $\mathrm{m} \angle A C D=m \angle A+m \angle B$

Statements

Reasons

PROOF OF EXTERIOR ANGLE THEOREM

Given: $\triangle A B C$ with exterior angle $\angle A C D$
Prove: $\mathrm{m} \angle A C D=m \angle A+m \angle B$

Statements	Reasons
$\triangle \triangle A B C$ withexterior $\angle A C D$	Given
$m \angle A+m \angle B+m \angle A C B=180$	$\triangle \angle$ Sum Thm
$m \angle A C B+m \angle A C D=180$	Lin. Pair Thy.
$m \angle A C B+m \angle A C D=m \angle A+m \angle B+m \angle A C B$	Trans. Prop of $=$ (Subst.)
$m \angle A C D=m \angle A+m \angle B$	Subtr.prop.of $=$

KEY CONCEPTS

If two angles of one triangle are congruent to two angles of another triangle, then the third pair of angles are congruent.

Third Angles Theorem
then $\angle C \cong \angle F$

CLASS WORK

\author{

1. Find each missing angle measure.
}

CLASS WORK

1. Find each missing angle measure.

$$
\begin{aligned}
& m \angle 3+72+86=180 \quad m \angle 5=180-70-22=88 \\
& m \angle 3+158=180 \\
& m \angle 3=22^{\circ} \\
& m \angle 4=m \angle 3=22^{\circ}
\end{aligned}
$$

2. The measure of one angle in a triangle is 61°. The other two angles are in a ratio of $2: 5$. Find the measures of the angles.
3. The measure of one angle in a triangle is 61°. The other two angles are in a ratio of $2: 5$. Find the measures of the angles.

$$
\begin{aligned}
2 x+5 x+61 & =180 \\
7 x+61 & =180 \\
7 x & =119 \\
x & =17
\end{aligned}
$$

CLASS WORK

3. Find the value of x and the measures of the acute angles.

CLASS WORK

3. Find the value of x and the measures of the acute angles.

$$
\begin{aligned}
90+8 x+2+9 x+3 & =180 \\
-90 & -90
\end{aligned}
$$

$$
\begin{array}{r}
8 x+2+9 x+3=90 \\
17 x+5=90 \\
12 x=80 \\
x=5
\end{array}
$$

CLASS WORK

4. Find $m \angle A B D$.

CLASS WORK

4. Find $m \angle A B D$.

$$
\begin{aligned}
& 2 x+16=58+x+12 \\
& 2 x+16=x+70 \\
& x=54
\end{aligned}
$$

CHALLENGE

6. Find the value of each variable.

CHALLENGE

6. Find the

 value of each variable.$$
\begin{aligned}
& z=180-84-50=46 \\
& y=180-46=134 \\
& x=180-13-134=33
\end{aligned}
$$

LEARNING RUBRIC

- Got It: Applies concepts to prove congruence and find angle measures in complex/real world situations
- Almost There: Represents and applies concepts to solve for angle measures
- Moving Forward: Solves for interior and exterior angle measures in more complex situations that are represented
- Getting Started: Solves for interior and exterior angles in simple, represented settings
* The sum of the measures of a triangle is 180°.
* The measure of each exterior angle of a triangle equals the sum of the measures of its two remote interior angles.

SUMMARY

HOMEWORK

Pages 236-238:
16-26 even;
30-36 even;
38, 40

