CLASSIFYING TRIANGLES

$$
4-2
$$

1. Classify triangles by their angle measures and side lengths
2. Use triangle classifications to find angle measures and side lengths

OBJECTIVES

CLASSIFY BY ANGL

Triangle Classification
By Angle Measures

Classify each triangle by its angle measures.
A. $\triangle A B D$: acute \triangle
B. $\triangle B D C$: obtuse \triangle
C. $\triangle A C D$: right \triangle

CLASSIFY BY SIDES

Triangle Classiffication

By Side Lengths

Equilateral Triangle

Three congruent sides

Isosceles Triangle

At least two congruent sides

Scalene Triangle

No congruent sides

A right triangle can be a classification by side lengths because of the Pythagorean Theorem.
Classify each triangle by its side lengths.
A. $\triangle E H F$: isosceles \triangle
B. $\triangle E H G$: Scalene \triangle
C. $\triangle H F G$:s calene Δ

PRACTICE

1. Type equation here.Find the side lengths of the triangle.

$$
\begin{gathered}
4 x-10.7=2 x+6.3 \\
2 x=17 \\
x=8.5
\end{gathered}
$$

$$
\begin{gathered}
J K=K L=23.3 \text { units } \\
J L=44.5 \text { units }
\end{gathered}
$$

2. $\triangle A B C$ is equilateral. $A B=\left(\frac{1}{2} x+\frac{1}{4}\right)$, and $B C=\left(\frac{5}{2}-x\right)$. What is the perimeter of $\triangle A B C$?

$$
A B=B C=A C=\frac{5}{2}-\frac{3}{2}=1
$$

$$
P=3 \text { units }
$$

$$
\begin{gathered}
\frac{1}{2} x+\frac{1}{4}=\frac{5}{2}-x \\
2 x+1=10-4 x \\
6 x=9 \\
x=\frac{3}{2}
\end{gathered}
$$

Given: $\triangle A B C$ is equiangular

$$
\overline{E F} \| \overline{A C}
$$

Prove: $\triangle E B F$ is equiangular

Statements

Reasons

CHALLENGE

Given: $\triangle A B C$ is equiangular

$$
\overline{E F} \| \overline{A C}
$$

Prove: $\triangle E B F$ is equiangular

Statements	Reasons	
$\triangle A B C$ is equiangular	Given	
$\angle A \cong \angle B \cong \angle C$	Definition of equiangular	
$\overline{E F} \\| \overline{A C}$	Given	
$\angle B E F \cong \angle A ; \angle B F E \cong \angle C$	Corresponding Angles Postulate	
$\angle B E F \cong \angle B \cong \angle B F E$	Substitution Property (steps 2,4)	
$\triangle E B F$ is equiangular	Definition of equiangular	

Angles can be classified by their angles (acute, right, obtuse, equiangular)

Angles can be classified by their sides (scalene, isosceles, equilateral, right)

SUMMARY

LEARNING RUBRI

- Got It: To formally or informally prove classifications of triangles
- Almost There: To find angle measures and side lengths in real world/complex situations
- Moving Forward: To find angle measures and side lengths given triangle classification
- Getting Started: To classify angles by given angle measures or side lengths

Pages 227-229
12-18 even;
30,32,35,36,37,40,42,44

HOMEWORK

