CLASSIFYING TRIANGLES 4-2

1. Classify triangles by their angle measures and side lengths

2. Use triangle classifications to find angle measures and side

lengths

OBJECTIVES

CLASSIFY BY ANGLES

Classify each triangle by its angle measures.

- A. DABD: acute A
- B. $\triangle BDC$: Obtuse \triangle
- C. DACD: righta

CLASSIFY BY SIDES

A right triangle can be a classification by side lengths because of the Pythagorean Theorem.

Classify each triangle by its side lengths.

- A. DEHF: Isosceles D
- B. ΔEHG : Scalene \triangle
- C. DHFG:5 (alened

PRACTICE

1. Type equation here. Find the side lengths of the triangle.

$$4x - 10.7 = 2x + 6.3$$

 $2x = 17$
 $x = 8.5$

JK = KL = 23.3 units JL = 44.5 units

2x + 1 = 10 - 4x

6x = 9

2. $\triangle ABC$ is equilateral. $AB = (\frac{1}{2}x + \frac{1}{4})$, and $BC = (\frac{5}{2} - x)$. What is the perimeter of $\triangle ABC$? $\frac{1}{2}x + \frac{1}{4} = \frac{5}{2} - x$

$$AB = BC = AC = \frac{5}{2} - \frac{3}{2} = 1$$
$$P = 3 \text{ units}$$

Given: $\triangle ABC$ is equiangular $\overline{EF} \parallel \overline{AC}$ Prove: $\triangle EBF$ is equiangular

Statements	Reasons

Given: $\triangle ABC$ is equiangular $\overline{EF} \parallel \overline{AC}$ Prove: $\triangle EBF$ is equiangular

Statements	Reasons
ΔABC is equiangular	Given
$\angle A \cong \angle B \cong \angle C$	Definition of equiangular
$\overline{EF} \parallel \overline{AC}$	Given
$\angle BEF \cong \angle A; \angle BFE \cong \angle C$	Corresponding Angles Postulate
$\angle BEF \cong \angle B \cong \angle BFE$	Substitution Property (steps 2,4)
ΔEBF is equiangular	Definition of equiangular

CHALLENGE

Angles can be classified by their angles (acute, right, obtuse, equiangular)

Angles can be classified by their sides (scalene, isosceles, equilateral, right)

SUMMARY

LEARNING RUBRIC

- Got It: To formally or informally prove classifications of triangles
- Almost There: To find angle measures and side lengths in real world/complex situations
- Moving Forward: To find angle measures and side lengths given triangle classification
- Getting Started: To classify angles by given angle measures or side lengths

Pages 227 - 229 12 - 18 even; 30,32,35,36,37,40,42,44

HOMEWORK