Congruence and Transformations
 $$
4-1
$$

1. Draw, identify, and describe transformations in the coordinate plane
2. Use properties of rigid motions to determine whether figures are congruent and to prove figures congruent.

OBJECTIVES

REVIEW AND EXTEND

Representing Transformations in the Coordinate Plane

TRANSFORMATION	COORDINATE MAPPING AND DESCRIPTION	
Translation	$(x, y) \rightarrow(x+a, y+b)$	Translation a units horizontally and b units vertically
Reflection	$(x, y) \rightarrow(-x, y)$ Reflection across y-axis $(x, y) \rightarrow(x,-y)$ Reflection across x-axis	
Rotation	$(x, y) \rightarrow(y,-x)$	Rotation about $(0,0), 90^{\circ}$ clockwise $(x, y) \rightarrow(-y, x)$ Rotation about $(0,0), 90^{\circ}$ counterclockwise $(x, y) \rightarrow(-x,-y)$
Rotation about $(0,0), 180^{\circ}$		

Transformations and Congruence

Translations, reflections, and rotations produce images that are congruent to their preimages.
Dilations with scale factor $k \neq 1$ produce images that are not congruent to their preimages.

EXAMPLES

Use the definition of congruence in terms of rigid motions to determine whether the two figures are congruent and explain your answer.

A $\triangle A B C$ and $\triangle D E F$ have different sizes.

Since rigid motions preserve distance, there is no sequence of rigid motions that will map $\triangle A B C$ to $\triangle D E F$.
Therefore, $\triangle A B C \neq \triangle D E F$

B You can map JKLM to PQRS by the translation that has the following coordinate notation:

$$
(x, y) \rightarrow(x+5, y+3)
$$

A translation is a rigid motion.
Therefore, $\triangle J K L M \cong \triangle P Q R S$

EXAMPLES
For each pair of congruent figures, find a sequence of rigid motions that maps one figure to the other.

A You can map $\triangle A B C$ to $\triangle R S T$ by a reflection followed by a translation. Provide the coordinate notation for each. y-axis
Reflection: \qquad

$$
(x, y) \rightarrow(-x, y) \quad A(4, y)=
$$

Followed by...

$$
\underset{\text { Translation: }}{\text { Followed by... }}(x, y) \rightarrow(x, y-5) \quad A^{\prime \prime}(-4,-1)
$$

$$
\triangle A B C \cong \triangle R S T
$$

B You can map $\triangle D F G$ to $\triangle H J K$ by a rotation followed by a translation. Provide the coordinate notation for each. $90^{\circ} \mathrm{C}$
Rotation:

$$
(x, y) \rightarrow(-y, x)
$$

$$
\begin{aligned}
& \text { R of coach. } \\
& D(2,1) \rightarrow D^{\prime}(-1,2)
\end{aligned}
$$

Followed by...
Translation:

$$
\frac{(x, y) \rightarrow(x, y+1)}{x \operatorname{DC}(2)+5 x} \quad D^{\prime \prime}(-1,3)
$$

EXAMPLES

Use the definition of congruence in terms of rigid motions to determine whether the two figures are congruent and explain your answer.

2.

3.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EXAMPLES

Use the definition of congruence in terms of rigid motions to determine whether the two figures are congruent and explain your answer.

refl. across y-axis
$(x, y) \rightarrow(-x, y)$
$A(1,-4) \rightarrow A^{\prime}(-1,-4)$
$\triangle A B C \cong \triangle D F F$

$$
\begin{aligned}
& \text { on to the other } \\
& \text { JK LM } F P Q R S
\end{aligned}
$$

2.

diff sizes:
no series of rigid
3.

180° rotation $(x, y) \rightarrow(-x,-y)$
motions to map one
$T(2,4) \overrightarrow{-}(-2,-4)$
$\triangle T u V \Im \Delta x_{12}$

EXAMPLES

For each pair of congruent figures, find a sequence of rigid motions that maps one figure to the other. Give coordinate notation for the transformations you use.
4.

6.

\qquad

EXAMPLES

For each pair of congruent figures, find a sequence of rigid motions that maps one figure to the other. Give coordinate notation for the transformations you use.
4.

5.

refl $(x$-axis $)=$ trans. 180° rotation trans.

$$
\begin{aligned}
& (x, y) \rightarrow(x,-y))=(x+5, y) \quad(x, y) \rightarrow(-x,-y) \rightarrow(x-1, y+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { JKLmミuv } \cong x
\end{aligned}
$$

6.

\qquad
\qquad
\qquad
\qquad

EXAMPLES

For each pair of congruent figures, find a sequence of rigid motions that maps one figure to the other. Give coordinate notation for the transformations you use.

5.

6.

\qquad
\qquad refl. $/ y$-axis $\rightarrow \operatorname{trans}, v_{2}$ $(x, y) \rightarrow(-x, y) \rightarrow(x, y-2)$
$A(-1,2)+P\left(1,2+2 A^{\prime \prime}(1,0)\right.$
\qquad
\qquad

CHALLENGE

Apply the transformations M to the polygon with the given vertices. Name the coordinates of the image point. Identify and describe the transformations.

$$
M:(x, y) \rightarrow(x,-y) \rightarrow(x+3, y)
$$

CHALLENGE

Apply the transformations M to the polygon with the given vertices. Name the coordinates of the image point. Identify and describe the transformations.

$$
M:(x, y) \rightarrow(x,-y) \rightarrow(x+3, y)
$$

$$
\begin{aligned}
A(-1,5) & \rightarrow A^{\prime}(-1,-5) \rightarrow A^{\prime \prime}(2,-5) \\
B(1,4) & \rightarrow B^{\prime}(1,-4) \rightarrow B^{\prime \prime}(4,-4) \\
C(-4,-2) & \rightarrow C^{\prime}(-4,2) \rightarrow C^{\prime \prime}(-1,2)
\end{aligned}
$$

Reflection across $x-a x i s$
then translation
3 units right

Translations, reflections, rotations, and combinations thereof produce images that are congruent to their preimages.

SUMMARY

LEARNING RUBRIC

- Got It: Identify transformation combinations and give multiple coordinate mapping steps to map a preimage onto its image to determine congruence
- Almost There: Identify a transformation and its coordinate mapping to map a preimage onto its image to determine congruence
- Moving Forward: Identify a transformation and show its coordinate mapping
- Getting Started: Graph and identify a transformation with given coordinate mapping

Pages 220-223:
14-26 even;
30, 36, 37
HOMEWORK

