More on Parallel and Perpendicular Lines

\square To write the equation of the perpendicular bisector of a line segment \square To find the distance between parallel lines

Write the slope intercept equation of the line parallel to the given line that contains point C.

10. $\overleftrightarrow{\mathrm{AB}}: y=-5 x+12 ; C(-2,1)$
11. $\overleftrightarrow{\mathrm{AB}}: y=\frac{1}{5} x+8 ; C(3,6)$

Write the slope intercept equation of the line parallel to the given line that contains point C.
10. $\overleftrightarrow{\mathrm{AB}}: y=\stackrel{m}{-5 x}+12 ; C(-2,1)$
$y-1=-5(x+2)$
$y-1=-5 x-10$

$$
y=-5 x-9
$$

$y-6=\frac{1}{5}(x-3)$

$$
y=\frac{1}{5} x+\frac{27}{5}
$$

Write the slope intercept equation of the line perpendicular to the given line that contains P.
12. $P(4,3) ; y=-3 x-15$

Write the slope intercept equation of the line perpendicular to the given line that contains P.

$$
\begin{aligned}
& \text { 12. } P(4,3) ; y=-3 x-15 \\
& \text { new line }+\frac{1}{3}=m \\
& \begin{array}{ll}
y-3=\frac{1}{3}(x-4) & 3(y-3)=1(x-4) \\
y-3=\frac{1}{3} x-\frac{4}{3}+\frac{9}{3} & \frac{3 y}{3}=\frac{x}{3} \frac{+5}{3} \\
+3 & y=\frac{1}{3} x+\frac{5}{3} \\
y=\frac{1}{3} x+\frac{5}{3} &
\end{array}
\end{aligned}
$$

1. Write the equation of the perpendicular bisector of a line with the endpoints $(2,5)$ and $(4,9)$.

PERPENDICULAR BISECTORS

1. Write the equation of the perpendicular bisector of a line with the endpoints $(2,5)$ and $(4,9)$.

$$
\begin{array}{ll}
\text { Line segment } & \frac{\text { L bisector }}{\binom{3,7}{x_{1}, 7}} \\
\begin{array}{ll}
\text { midpoint } \\
\left(\frac{2+4}{2}, \frac{5+9}{2}\right) & m=-\frac{1}{2} \\
y-7=-\frac{1}{2}(x-3) \\
m=\frac{9-5}{4-2}=\frac{4}{2}=2 & 2(y-7)=-1(x-3) \\
2 y-14=-x+3 \\
\frac{2 y}{2}=-\frac{x}{2}+\frac{17}{2}
\end{array}
\end{array}
$$

2. Write the equation of the perpendicular bisector of a line with the endpoints $(1,3)$ and $(-1,4)$.

To find the equation of any line, we need slope and a point on the line: Step 1: Find the slope of the line containing the line segment.
Step 2: Find the opposite reciprocal slope of the line segment. (This will be the slope of the perpendicular bisector.)
Step 3: Find the midpoint of the segment. (This will be the point on the perpendicular bisector.)
Step 4: Write the equation of the perpendicular bisector.

PERPENDICULAR BISECTORS
2. Write the equation of the perpendicular bisector of a line with the endpoints $(1,3)$ and $(-1,4)$.

3. Find the distance between lines with the following equations:

$$
\begin{aligned}
& y=x+3 \\
& y=x-1
\end{aligned}
$$

3. Find the distance between lines with the following equations:

$$
\begin{aligned}
& y=x+3 \quad(0,3) \quad b=3 \quad m=-1 \\
& y=x-1(2,1) \quad y=-1 x+3 \\
& x-1=-x+3 \\
& d=\sqrt{(2-0)^{2}+(1-3)^{0}} \\
& 2 x=4 \\
& x=2 \\
& d=\sqrt{4+4}=\sqrt{8} \\
& d=2 \sqrt{2} \approx 2.8
\end{aligned}
$$

1 line:

4. Find the distance between lines with the following equations:

$$
\begin{aligned}
& y=-1 x+10(0,10) \\
& y=-1 x+15
\end{aligned}
$$

To find the distance, we need to know where a perpendicular segment will intersect both of the parallel lines.
Step 1: Find the equation of a line perpendicular to line 1 at a chosen point.
Step 2: Find the intersection of the perpendicular line and line 2. (Solve the system of the two equations.)
Step 3: Find the distance between the intersection points for line 1 and line 2.
4. Find the distance between lines with the following equations:

$$
\begin{aligned}
& y=-1 x+10 \\
& y=-1 x+15
\end{aligned}
$$

DISTANCE
4. Find the distance between lines with the following equations:

$$
\begin{array}{llll}
y=-1 x+10(0,10) & \frac{1 \text { line }}{y=-1 x+15(2.5,12.5)} & \frac{\text { Solvesys. }}{b=10, m=1} & \frac{\text { distance }}{-1 x+15=1 x+10} \\
-1(2.5)+15= & d=\sqrt{(2.5-0)^{2}+(12.5-10)^{2}} \\
y=1 x+10 & 5=2 x & d=\sqrt{6.25+6.25} \\
& 2.5=x & d=\sqrt{12.5} \approx 3.5
\end{array}
$$

Pages 194-195:
38-44 even
47 - 50 all

