

Slopes of Lines

OBJECTIVES

 To find the slope of a line
To use slopes to identify parallel and perpendicular lines

KEY CONCEPTS

Slope of a Line

DEFINITION

The **rise** is the difference in the *y*-values of two points on a line.

The **run** is the difference in the *x*-values of two points on a line.

The **slope** of a line is the ratio of the rise to run. If (x_1, y_1) and (x_2, y_2) are any two points on a line, the slope of the line is $m = \frac{y_2 - y_1}{x_2 - x_1}$.

KEY CONCEPTS

Summary: Slope of a Line			
Positive Slope	Negative Slope	Zero Slope	Undefined Slope
x x	x x	x x	x

1. Use the slope formula to determine the slope of each line.

 $\begin{aligned} &\overleftarrow{AB} : m = \frac{7-7}{3-2} = \frac{0}{5} = 0 \\ &\overleftarrow{AC} : m = \frac{2-7}{4+2} = \frac{-5}{6} \\ &\overleftarrow{AD} : m = \frac{1-7}{4+2} = \frac{-6}{5} = 3 \text{ undefined} \\ &\overleftarrow{CD} : m = \frac{2-1}{4+2} = \frac{1}{5} \end{aligned}$

KEY CONCEPTS

Slopes of Parallel and Perpendicular Lines

3-5-1 Parallel Lines Theorem

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope. Any two vertical lines are parallel.

3-5-2 Perpendicular Lines Theorem

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1. Vertical and horizontal lines are perpendicular.

If the slope of a line is $\frac{a}{b}$, then the slope of a parallel line is $\frac{a}{b}$. If the slope of a line is $\frac{a}{b}$, then the slope of a perpendicular line is $-\frac{b}{a}$. $\frac{a}{b}$ and $-\frac{b}{a}$ are called opposite reciprocals.

Find the slopes of the given lines to determine if they are parallel, perpendicular, or neither.

2. \overrightarrow{UV} and \overrightarrow{XY} for U(0, 2), V(-1, -1), X(3, 1), and Y(-3, 3). $\frac{1}{10} = \frac{-1}{1-0} = \frac{-3}{-1} = \frac{-3}{3} = \frac{-3}{1-0} = \frac{-3}{-1} = \frac{-3$ 3. \overrightarrow{UV} and \overrightarrow{XY} for U(-3, -2), V(1, 2), X(-2, 4), and Y(2, -4). $w = \frac{2+2}{1+3} = \frac{4}{4} = \frac{1}{1} = \frac{-4-4}{2+2} = \frac{-8}{4} = \frac{1}{1}$ neither

Find the slopes of the given lines to determine if they are parallel, perpendicular, or neither.

4. \overrightarrow{UV} and \overrightarrow{XY} for U(-1, -3), V(1, 1), X(-1, 1), and Y(0, 3).

5. UV and *XY* for U(-4, 4), V(-2, -3), X(3, 1), and Y(-5, -1).

Find the slopes of the given lines to determine if they are parallel, perpendicular, or neither.

4. \overrightarrow{UV} and \overrightarrow{XY} for U(-1, -3), V(1, 1), X(-1, 1), and Y(0, 3). $\frac{1+3}{1+1} = \frac{4}{2} = 2$ $\frac{3-1}{0+1} = \frac{2}{1} = 2$ Parallel

5. \overrightarrow{UV} and \overrightarrow{XY} for U(-4, 4), V(-2, -3), X(3, 1), and Y(-5, -1). -3-4 = -7 -1-1 = -2 = 1-2+4 = 2 -5-3 = 8 4

CHALLENGE

Justin is driving from home to his college dormitory. At 4:00 pm, he is 260 miles from home. At 7:00 pm, he is 455 miles from home. Graph the line that represents Justin's distance from home at a given time. Find and interpret the slope of the line

CHALLENGE

Justin is driving from home to his college dormitory. At 4:00 pm, he is 260 miles from home. At 7:00 pm, he is 455 miles from home. Graph the line that represents Justin's distance from home at a given time. Find and interpret the slope of the Justin's Trip line $M = \frac{455 \cdot 260}{7 - 4} = \frac{195}{3} \cdot \frac{65}{1} \text{ miles}$ 10UD miles traveled Justin is travelling 65 miles per hour 200

hoursdriver

SUMMARY

The slopes of parallel lines are the same.
The slopes of perpendicular lines are opposite reciprocals.

LEARNING RUBRIC

- Got It: Proves Calculates slope and categorizes lines in complex/real-world situations
- Almost There: Calculates and compares slopes to classify as parallel, perpendicular, or neither
- Moving Forward: Compare two slopes to categorize as parallel, perpendicular or neither
- Getting Started: Uses a graphed line or given points to calculate slope

Pages 186 – 187 10 – 18 all; 25 – 28 all