Slopes of Lines

* To find the slope of a line
* To use slopes to identify parallel and perpendicular lines

Slope of a Line

DEFINITION
 EXAMPLE

The rise is the difference in the y-values of two points on a line.
The run is the difference in the x-values of two points on a line. The slope of a line is the ratio of the rise to run. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are any two points on a line, the slope of the line is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

Summary: Slope of a Line

Positive Slope	Negative Slope	Zero Slope	Undefined Slope

1. Use the slope formula to determine the slope of each line.

$$
\begin{aligned}
& \overleftrightarrow{A B}: m=\frac{7-7}{3+2}=\frac{0}{5}=0 \\
& \overleftrightarrow{A C} \cdot m=\frac{2-7}{4+2}=\frac{-5}{6} \\
& \overleftrightarrow{A D}: m=\frac{1-7}{-2+2}=\frac{-6}{0} \rightarrow \text { undefined } \\
& \overleftrightarrow{C D}: m=\frac{2-1}{4+2}=\frac{1}{6}
\end{aligned}
$$

Slopes of Parallel and Perpendicular Lines

3-5-1 Parallel Lines Theorem

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope. Any two vertical lines are parallel.

3-5-2 Perpendicular Lines Theorem

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1 . Vertical and horizontal lines are perpendicular.

If the slope of a line is $\frac{a}{b}$, then the slope of a parallel line is $\frac{a}{b}$. If the slope of a line is $\frac{a}{b}$, then the slope of a perpendicular line is $-\frac{b}{a}$. $\frac{a}{b}$ and $-\frac{b}{a}$ are called opposite reciprocals.

Find the slopes of the given lines to determine if they are parallel, perpendicular,
2. $\overleftrightarrow{U V}$ and $\overleftrightarrow{X Y}$ for $\mathrm{U}(0,2), \mathrm{V}\left(-1^{2},-1\right)$, $X(3,1)$, and $Y(-3,3)$. or neither.
3. $\overleftrightarrow{U V}$ and $\overleftrightarrow{X Y}$ for $\mathrm{U}(-3,-2), \mathrm{V}(1,2)$, $X(-2,4)$, and $Y(2,-4)$.

$$
\left.\overleftrightarrow{u v}: m=\frac{2+2}{1+3}=\frac{4}{4}=1\right] \overleftrightarrow{x y} \cdot m=\frac{-4-4}{2+2}=\frac{-8}{4}=-2
$$

neither

Find the slopes of the given lines to determine if they are parallel, perpendicular, or neither.
4. $\overleftrightarrow{U V}$ and $\overleftrightarrow{X Y}$ for $\mathrm{U}(-1,-3), \mathrm{V}(1,1)$, $X(-1,1)$, and $Y(0,3)$.
5. $\overleftrightarrow{U V}$ and $\overleftrightarrow{X Y}$ for $U(-4,4), \mathrm{V}(-2,-3)$, $X(3,1)$, and $Y(-5,-1)$.

Find the slopes of the given lines to determine if they are parallel, perpendicular, or neither.
4. $\overleftrightarrow{U V}$ and $\overleftrightarrow{X Y}$ for $\mathrm{U}(-1,-3), \mathrm{V}(1,1)$, $X(-1,1)$, and $Y(0,3)$.

$$
\frac{1+3}{1+1}=\frac{4}{2}=2 \quad \frac{3-1}{0+1}=\frac{2}{1}=2
$$

Parallel
5. $\overleftrightarrow{U V}$ and $\overleftrightarrow{X Y}$ for $\mathrm{U}(-4,4), \mathrm{V}(-2,-3)$, $X(3,1)$, and $Y(-5,-1)$.
$\frac{-3-4}{-2+4}=\frac{-7}{2} \quad \frac{-1-1}{-5-3}=\frac{-2}{8} \frac{2}{8}=\frac{1}{4}$
neither

Justin is driving from home to his college dormitory. At 4:00 pm , he is 260 miles from home. At 7:00 pm, he is 455 miles from home. Graph the line that represents Justin's distance from home at a given time. Find and interpret the slope of the line

CHALLENGE

Justin is driving from home to his college dormitory. At 4:00 pm , he is 260 miles from home. At 7:00 pm, he is 455 miles from home. Graph the line that represents Justin's distance from home at a given time. Find and interpret the slope of the

$$
m=\frac{455 \cdot 260}{7-4}=\frac{195}{3} \cdot \frac{65 \text { miles }}{1 \mathrm{hr}}
$$

Justin is travelling 65 miles per hour

\square The slopes of parallel lines are the same.

- The slopes of perpendicular lines are opposite reciprocals.
- Got It: Proves Calculates slope and categorizes lines in complex/real-world situations
\square Almost There: Calculates and compares slopes to classify as parallel, perpendicular, or neither
- Moving Forward: Compare two slopes to categorize as parallel, perpendicular or neither
- Getting Started: Uses a graphed line or given points to calculate slope

Pages 186-187
10 - 18 all;
25-28 all

