

Parallel and Perpendicular Lines

OBJECTIVE

To relate parallel and perpendicular lines

Parallel Postulate

Through a point not on a line, there is one and only one line parallel to the given line.

There is exactly one line through P parallel to line *a*.

Transitive Property of Parallel Lines Theorem

If two lines are parallel to the same line, then they are parallel to each other.

If $a \mid b and b \mid c$, then $a \mid c$.

Equal Measure Linear Pair Theorem

If two intersecting lines form a linear pair of congruent angles, the lines are perpendicular.

If $\angle 1 \cong \angle 2$, then $m \perp n$.

Perpendicular Transversal Theorem

In a plane, if a line is perpendicular to one of two parallel lines, then it is also perpendicular to the other.

If $n \perp t$ and $m \mid \mid n$, then $m \perp t$.

Theorem 3-4-3

In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

If $m \perp t$ and $n \perp t$, then $m \mid \mid n$.

CLASS WORK

1. Write and solve an inequality for x.

2. Solve to find x and y in the diagram.

Given: $a \parallel b, a \perp t$ **Prove:** $b \perp t$

Proof of Perpendicular Transversal Theorem

Given: $a \parallel b, a \perp t$ **Prove:** $b \perp t$

Proof of Perpendicular Transversal Theorem

Pages 175 – 178 8 – 20 even 24, 32, 34