

Proving Lines Parallel

To use the angles formed by a transversal to prove two lines are parallel

Converse of the Corresponding Angles Postulate: If two lines and a transversal form corresponding angles that are congruent, then the lines are parallel.

5

6

3

8

7

If $\angle 1 \cong \angle 3$, then p || q

- Converse of the Alternate Interior Angles Theorem:
- If two lines and a transversal form alternate interior angles that are congruent, then the lines are parallel.

5

6

3

8

7

If $\angle 2 \cong \angle 7$, then p || q

- Converse of the Same-Side Interior Angles Theorem:
- If two lines and a transversal form same-side interior angles that are supplementary, then the lines are parallel.

5

6

3

8

If $m \angle 2 + m \angle 3 = 180$, then p || q

Converse of the Alternate Exterior Angles Theorem:

If two lines and a transversal form alternate exterior angles that are congruent, then the lines are parallel.

5

6

3

8

7

If $\angle 1 \cong \angle 8$, then p || q

CLASS WORK

 $1. \angle 4 \cong \angle 5$ Name the CONV OF Alternate Int. is Thm Postulate or $2, \angle 2 \cong \angle 7$ Theorem CONV. of AltExtLsthm + that 8 proves $3. \angle 3 \cong \angle 7$ $p \parallel r$ CONV-OF COVE LS Postalate

4.∠3 and ∠5 are supplementary

Conv. of SS Int LS Theorem

Use the theorems and given informatio n to prove $p \parallel r$

5. $m \angle 2 =$ $(5x + 20)^{\circ};$ $m \angle 7 =$ $(7x + 8)^{\circ};$ and x = 6mL2=mL7 5x+20=7x+8 -7 5x+20=7x+8 5(6)+20=7(6)+8 12 = 2x 6 = X V 50-501

CLASS WORK

Find the value of x that shows that $p \parallel r$

 $5x = 6. m \angle 4 = (5x - 10)^{\circ};$ $m \angle 6 = (8x - 5)^{\circ}$ $m \angle 4 + m \angle 6 = 180$ 5x - 10 + 8x - 5 = 1803x - 15 = 180

13×=195

X=15

Proof of Converse of Alternate Interior Angles Theorem

Given: $\angle 2 \cong \angle 8$ Prove: $a \parallel b$

2. 10. 5	Statements	Reasons	1000
			144.5
ALL OF ALL			世にいる
1. 5. 18			58000
1			10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			「日本」」
S. 11 5			ALL STOR
			1000

Proof of Converse of Alternate Interior Angles Theorem

Given: $\angle 2 \cong \angle 8$ Prove: $a \parallel b$

Statements	Reasons
$\angle 2 \cong \angle 8$	Given
$\angle 6 \cong \angle 8$	Vertical angles are congruent.
$\angle 2 \cong \angle 6$	Transitive Property of Congruence
a b	Converse of Corresponding Angles Postulate

tr

3

Proof of Converse of Alternate Exterior Angles Theorem

Given: $\angle 1 \cong \angle 7$ Prove: $a \parallel b$

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Statements	Reasons
1.000		
1 . C. 12		
5. W. 1.		

Proof of Converse of Alternate Exterior Angles Theorem

Given: $\angle 1 \cong \angle 7$ Prove: $a \parallel b$

Statements	Reasons
$\angle 1 \cong \angle 7$	Given
$\angle 1 \cong \angle 3$	Vertical angles are congruent.
$\angle 3 \cong \angle 7$	Transitive Property of Congruence
a b	Converse of Corresponding Angles Postulate

 $t \propto 1$

3

h

SUMMARY

If two lines and a transversal form: □ congruent corresponding angles □ congruent alternate interior angles □ congruent alternate exterior angles □ supplementary same-side interior angles then the two lines are parallel.

LEARNING RUBRIC

- □ Got It: Proves Theorem converses with proofs
- Almost There: Applies postulate and theorems to build equations to prove lines parallel in complex/real-world situations
- Moving Forward: Applies postulate and theorems to build equations to prove lines parallel
- Getting Started: Uses a given variable value to prove lines parallel

Pages 167 – 169 16 – 22 even 30, 34, 36, 38, 40, 44, 48, 52