Proving Lines Parallel

To use the angles formed by a transversal to prove two lines are parallel

Converse of the Corresponding Angles Postulate:
If two lines and a transversal form corresponding angles that are congruent, then the lines are parallel.

If $\angle 1 \cong \angle 3$,
then $p \| q$

Converse of the Alternate Interior Angles Theorem:

If two lines and a transversal form alternate interior angles that are congruent, then the lines are parallel.

If $\angle 2 \cong \angle 7$,
then $p \| q$

Converse of the Same-Side Interior Angles Theorem:

If two lines and a transversal form same-side interior angles that are supplementary, then the lines are parallel.

If $m \angle 2+m \angle 3=180$, then $p \| q$

Converse of the Alternate Exterior Angles Theorem:
If two lines and a transversal form alternate exterior angles that are congruent, then the lines are parallel.

If $\angle 1 \cong \angle 8$, then $p \| q$

$$
\text { 1. } \angle 4 \cong \angle 5
$$

Name the Postulate or
Theorem that

Cons of Al ternate int. is The

$$
\text { 2. } \angle 2 \cong \angle 7
$$

proves

$p \| r$
Conv-of Corr Ls Postulate
4. $\angle 3$ and $\angle 5$ are supplementary

Cons. of $5 s \ln +\angle S$ Theorem

Use the
5. $m \angle 2=$
theorems
and given
$(5 x+20)^{0}$;
$m \angle 7=$ information
n to prove
$(7 x+8)^{\circ}$;
and $x=6$ $p \| \mathrm{r}$

$$
\begin{array}{rlrl}
m \angle 2 & =m<7 & & \\
5 x+20 & =7 x+8 \\
5(6)+20 & =7(6)+8 & 5 x+20 & =7 x+8 \\
50 & =50 & 12 & =2 x \\
& 6 & =x \vee
\end{array}
$$

Find the value of x
6. $m \angle 4=$
$(5 x-10)^{0}$;
$m \angle 6=(8 x-5)^{\circ}$
shows
that
$p \| r$

$$
\begin{array}{r}
m \angle 4+m \angle 6=180 \\
5 x-10+8 x-5=180 \\
13 x-15=180 \\
13 x=195 \\
x=15
\end{array}
$$

Proof of Converse of Alternate Interior Angles Theorem

Given: $\angle 2 \cong \angle 8$
Prove: $\boldsymbol{a} \| \boldsymbol{b}$
Statements \quad Reasons

Proof of Converse of Alternate Interior Angles Theorem

Given: $\angle 2 \cong \angle 8$
Prove: $\boldsymbol{a} \| \boldsymbol{b}$

Statements	Reasons	
$\angle 2 \cong \angle 8$	Given	
$\angle 6 \cong \angle 8$	Vertical angles are congruent.	
$\angle 2 \cong \angle 6$	Transitive Property of Congruence	
$a \\| b$	Converse of Corresponding Angles Postulate	

Proof of Converse of Alternate Exterior Angles Theorem

Given: $\angle 1 \cong \angle 7$
Prove: $\boldsymbol{a} \| \boldsymbol{b}$
Statements \quad Reasons

Proof of Converse of Alternate Exterior Angles Theorem

Given: $\angle 1 \cong \angle 7$
Prove: $\boldsymbol{a} \| \boldsymbol{b}$

Statements	Reasons	
$\angle 1 \cong \angle 7$	Given	
$\angle 1 \cong \angle 3$	Vertical angles are congruent.	
$\angle 3 \cong \angle 7$	Transitive Property of Congruence	
$a \\| b$	Converse of Corresponding Angles Postulate	

If two lines and a transversal form:
a congruent corresponding angles
a congruent alternate interior angles
a congruent alternate exterior angles

- supplementary same-side interior angles then the two lines are parallel.
- Got It: Proves Theorem converses with proofs
- Almost There: Applies postulate and theorems to build equations to prove lines parallel in complex/real-world situations
- Moving Forward: Applies postulate and theorems to build equations to prove lines parallel
- Getting Started: Uses a given variable value to prove lines parallel

Pages 167-169
16 - 22 even
$30,34,36,38,40,44,48,52$

