

Properties of Parallel Lines

OBJECTIVES

To prove and use theorems about the angles formed by parallel lines and a transversal

t

5

6

p

7

8

Postulate/Theorem	Then:	Examples
Corresponding Angles Postulate		
Alternate Interior Angles Theorem		
Same-Side Interior Angles Theorem		
Alternate Exterior Angles Theorem		

t

5

6

p

7

8

Postulate/Theorem	Then:	Examples
Corresponding Angles Postulate	Corr. angles are congruent	$\angle 1 \cong \angle 3; \angle 2 \cong \angle 4$ $\angle 5 \cong \angle 7; \angle 6 \cong \angle 8$
Alternate Interior Angles Theorem		
Same-Side Interior Angles Theorem		
Alternate Exterior Angles Theorem		

t

5

6

p

7

8

Postulate/Theorem	Then:	Examples
Corresponding Angles Postulate	Corr. angles are congruent	$\angle 1 \cong \angle 3; \angle 2 \cong \angle 4$ $\angle 5 \cong \angle 7; \angle 6 \cong \angle 8$
Alternate Interior Angles Theorem	Alt. int. angles are congruent	$\angle 2 \cong \angle 7; \angle 3 \cong \angle 6$
Same-Side Interior Angles Theorem		
Alternate Exterior Angles Theorem		

t

5

6

p

3

8

7

Postulate/Theorem	Then:	Examples
Corresponding Angles Postulate	Corr. angles are congruent	$\angle 1 \cong \angle 3; \angle 2 \cong \angle 4$ $\angle 5 \cong \angle 7; \angle 6 \cong \angle 8$
Alternate Interior Angles Theorem	Alt. int. angles are congruent	$\angle 2 \cong \angle 7; \angle 3 \cong \angle 6$
Same-Side Interior Angles Theorem	SS int. angles are supplementary	$m \angle 2 + m \angle 3 = 180$ $m \angle 6 + m \angle 7 = 180$
Alternate Exterior Angles Theorem		

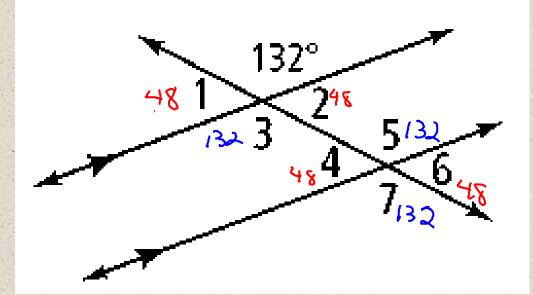
t

5

6

p

3


8

7

Postulate/Theorem	Then:	Examples
Corresponding Angles Postulate	Corr. angles are congruent	$\angle 1 \cong \angle 3; \angle 2 \cong \angle 4$ $\angle 5 \cong \angle 7; \angle 6 \cong \angle 8$
Alternate Interior Angles Theorem	Alt. int. angles are congruent	$\angle 2 \cong \angle 7; \angle 3 \cong \angle 6$
Same-Side Interior Angles Theorem	SS int. angles are supplementary	$m \angle 2 + m \angle 3 = 180$ $m \angle 6 + m \angle 7 = 180$
Alternate Exterior Angles Theorem	Alt. ext. angles are congruent	$\angle 1 \cong \angle 8; \angle 4 \cong \angle 5$

CLASS WORK

1. Identify all the numbered angles that are congruent to the given angle. Justify your answers.

Given: $a \mid \mid b$ Prove: $\angle 2 \cong \angle 8$

	Statements	Reasons
1. 22		
	- The second second second	

2

5

8

6

7

3

4

a

Proof of Alternate Interior Angles Theorem

Given: $a \mid \mid b$ Prove: $\angle 2 \cong \angle 8$

	Statements	Reasons
	a b	Given
No. of the local division of the local divis	$\angle 2 \cong \angle 6$	Corresponding Angles Postulate
	$\angle 6 \cong \angle 8$	Vertical angles theorem
	$\angle 2 \cong \angle 8$	Transitive Property of Congruence

2

5

8

6

7

3

4

a

Proof of Alternate Interior Angles Theorem

Given: a | |b Prove: ∠2 *and* ∠5 are supplementary

	Statements	Reasons
No. 1		
ALL ALL		
1. 1.		
CALCE IN		
- North		

4

a

3

5

8

b

6

Given: a | |b Prove: ∠2 *and* ∠5 are supplementary

Statements	Reasons
a b	Given
$m \angle 1 + m \angle 2 = 180$	Linear Pair Theorem
$\angle 1 \cong \angle 5$	Corresponding Angles Postulate
$m \angle 1 = m \angle 5$	Definition of Congruent Angles
$m \angle 5 + m \angle 2 = 180$	Substitution Property of Equality
∠2 <i>and</i> ∠5 are supplementary	Definition of Supplementary Angles

4

a

3

5

8

6

Proof of Same-Side Interior Angles Theorem

Given: $a \mid \mid b$ Prove: $\angle 1 \cong \angle 7$

	Statements	Reasons
1		
1		
14.15		

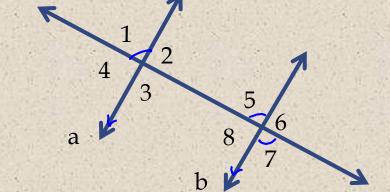
2

5

8

6

7


3

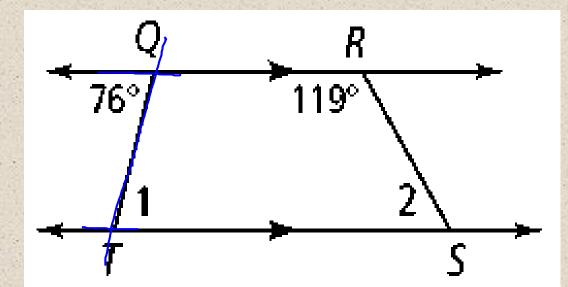
4

а

Proof of Alternate Exterior Angles Theorem

Given: $a \mid \mid b$ Prove: $\angle 1 \cong \angle 7$

No.	Statements	Reasons
	a b	Given
A State State	$\angle 1 \cong \angle 5$	Corresponding Angles Postulate
	$\angle 7 \cong \angle 5$	Vertical angles theorem
	$\angle 1 \cong \angle 7$	Transitive Property of Congruence

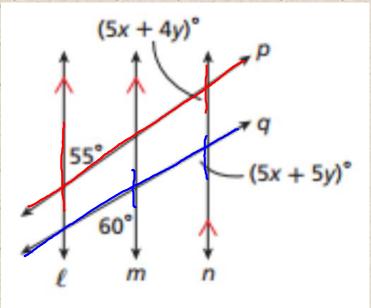

Proof of Alternate Exterior Angles Theorem

CLASS WORK

2. Find $m \angle 1$ and $m \angle 2$. Justify each answer.

MLI=76 Altint.Lsthm

mLa+119=180 mLa=61° SS int.LS


CLASS WORK

52+44

3. Find *x* and *y*.

$$5x + 5y = 60 / (5x + 4y = 55)) / (5x + 4y = 55)) / (5x + 5(5) = 60) / (5x + 25 = 60) / (5x + 25 = 60) / (5x = 35))$$

X = 7

If two parallel lines are cut by a transversal, then:

1. corresponding angles, alternate interior angles, and alternate exterior angles are congruent.

2. Same-side interior angles are supplementary

SUMMARY

LEARNING RUBRIC

- □ Got It: Proves Theorems with proofs
- Almost There: Applies postulate and theorems to complex/real-world situations
- Moving Forward: Uses postulate and theorem to write equations to solve for angle measures
- Getting Started: Finds all angle measures when one is given

Pages 158 – 160 6 – 12 even 20 – 28 even 30, 34