2-6
 PROVING ANGLES CONGRUENT

to write two-column proofs to prove geometric theorems using deductive reasoning

2-6-1
Linear Pair Theorem.

If two angles form a linear pair, then they are supplementary.
$\angle 1$ and $\angle 2$ form a linear pair.
$\angle 1$ and $\angle 2$ are supplementary.

Linear Pair Theorem

If two angles form a linear pair, then they are supplementary.
Given: $\angle M J K$ and $\angle M J L$ are a linear pair of angles.
Prove: $\angle M J K$ and $\angle M J L$ are supplementary.

Complete the proof by writing the missing reasons. Choose from the following reasons.
Angle Addittron Postulate

Definメuon of opposite rays
Substitution Property of Equality GXen

Statements	Reasons
1. $\angle M J K$ and $\angle M J L$ are a linear pair.	1. Given
2. $\overrightarrow{J L}$ and $\overrightarrow{J K}$ are opposite rays.	2. Definition of linear pair
3. $\overrightarrow{J L}$ and $\overrightarrow{J K}$ form a straight line.	3. Def. of opposite rays
4. $m \angle U K=180^{\circ}$	4. Definition of straight angle
5. $m \angle M J K+m \angle M J L=m \angle U K$	5. L addition postuiate
6. $m \angle M J K+m \angle M J L=180^{\circ}$	6. Sub.stitution prop of $=$
7. $\angle M J K$ and $\angle M J L$ are supplementary.	7. Definition of supplementary angles

2-6-2
Congruent Supplements
Theorem.

If two angles are supplements of the same angle, (or congruent angles), then they are congruent.
$\angle 1$ and $\angle 2$ are supplementary, and $\angle 1$ and $\angle 3$ are supplementary.

$$
\angle 2 \cong \angle 3 .
$$

2-6-3

Right Angle
Congruence
Theorem

All right angles are congruent.

> If $\angle 1$ and $\angle 2$ are right angles, then $\angle 1 \cong \angle 2$.

Given: $\angle 1$ and $\angle 2$ are right angles Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
$\angle 1$ and $\angle 2$ are right angles	Given
$m \angle 1=90 ; m \angle 2=90$	Def. of right $\angle s$
$M L 1=m \angle 2$	Transitive Prop. of $=$
$\angle 1 \cong \angle 2$	Def. of $\cong \angle s$

PROOF OF RIGHT ANGLE CONGRUENCE THEOREM

If two angles are complements of the same angle, (or congruent angles), then they are congruent.
$\angle 1$ and $\angle 2$ are complementary, and $\angle 1$ and $\angle 3$ are complementary.

$$
\angle 2 \cong \angle 3 .
$$

Given: $\angle 1$ and $\angle 2$ are complementary $\angle 3$ and $\angle 2$ are complementary

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons
$\angle 1$ and $\angle 2$ are complementary	Given
$\angle 3$ and $\angle 2$ are complementary	
$m \angle 1+m \angle 2=90$	Definition of complementary
$m \angle 3+m \angle 2=90$	angles.
$m \angle 1+m \angle 2=m \angle 3+m \angle 2$	Transitive Property of $=$
$m \angle 1=m \angle 3$	Subtraction Property of =
$\angle 1 \cong \angle 3$	Angles with the same measure are congruent.

$\angle 1$ and $\angle 2$ are complementary Given
$\angle 3$ and $\angle 2$ are complementary
$m \angle 1+m \angle 2=90$
$m \angle 3+m \angle 2=90$
$m \angle 1+m \angle 2=m \angle 3+m \angle 2$
$m \angle 1=m \angle 3$
$\angle 1 \cong \angle 3$

Reasons

Definition of complementary angles.
Transitive Property of = Subtraction Property of =
Angles with the same measure are congruent.

Given: $\angle 1$ and $\angle 2$ are straight angles. Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
1. a. $L 1$ and $\angle 2$ are straight $L S$	1. Given
2. $\mathrm{m} \angle 1=180^{\circ}, \mathrm{m} \angle 2=180^{\circ}$	2. b. Def. of Str. $L \mathrm{~S}$
3. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$	3. Subst. Prop. of $=$
4. c. $\angle 1 \cong \angle 2$	4. Def. of $\cong \angle$

Angles can be proven congruent in several different ways. The 4 Theorems suggest ways to do this.

Pages 113-116:
$4,6,8,12,16,18,20,24,26$

