

PROVING ANGLES CONGRUENT

to write two-column proofs to prove geometric theorems using deductive reasoning

2-6-1 Linear Pair Theorem.

If two angles form a linear pair, then they are supplementary.

127

∠1 and ∠2 form a linear pair. ∠1 and ∠2 are supplementary.

Linear Pair Theorem

If two angles form a linear pair, then they are supplementary.

Given: $\angle MJK$ and $\angle MJL$ are a linear pair of angles. **Prove:** $\angle MJK$ and $\angle MJL$ are supplementary.

G-CO.3.9

PROOF

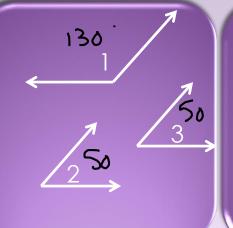
Complete the proof by writing the missing reasons. Choose from the following reasons.

Angle Addition Postulate

Definition of opposite rays

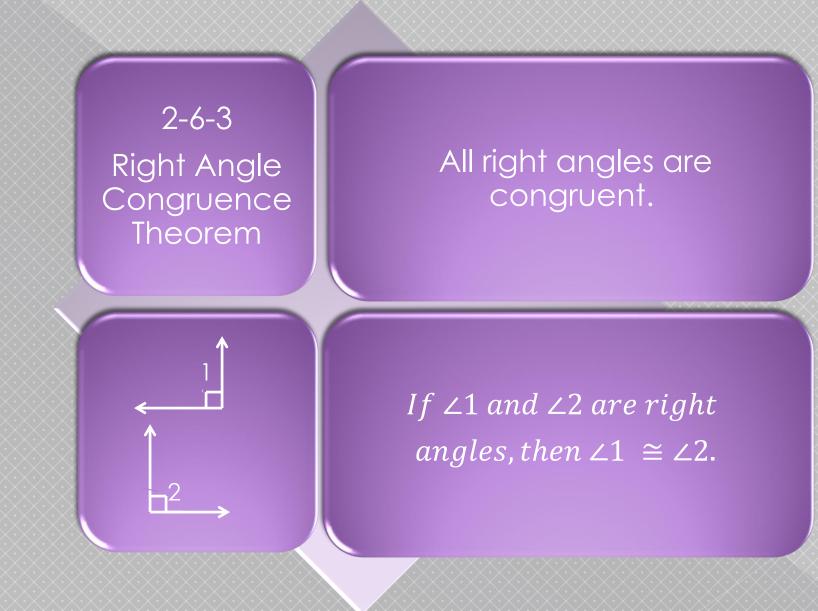
Substitution Property of Equality

Given


M 🖌

Statements	Reasons
1. $\angle MJK$ and $\angle MJL$ are a linear pair.	1. Given
2. \overrightarrow{JL} and \overrightarrow{JK} are opposite rays.	2. Definition of linear pair
3. \vec{JL} and \vec{JK} form a straight line.	3. Def. of opposite rays
4. <i>m∠LJK</i> = 180°	4. Definition of straight angle
5. $m \angle MJK + m \angle MJL = m \angle LJK$	5. Laddition postulate
6. $m \angle MJK + m \angle MJL = 180^{\circ}$	6. Substitution propof =
7. $\angle MJK$ and $\angle MJL$ are supplementary.	7. Definition of supplementary angles

PROOF OF LINEAR PAIR THEOREM


2-6-2 Congruent Supplements Theorem.

If two angles are supplements of the same angle, (or congruent angles), then they are congruent.

∠1 and ∠2 are supplementary, and ∠1 and ∠3 are supplementary.

 $\angle 2 \cong \angle 3.$

Given: $\angle 1$ and $\angle 2$ are right angles Prove: $\angle 1 \cong \angle 2$

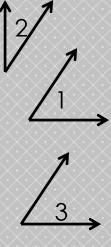
Statements	Reasons
∠1 and ∠2 are right angles	Given
mL1 = 90; $mL2 = 90$	Def. of right Ls
mLl = mL2	Transitive Prop. of =
$\angle 1 \cong L a$	Def. of = Ls

PROOF OF RIGHT ANGLE CONGRUENCE THEOREM

Congruent Complements Theorem.

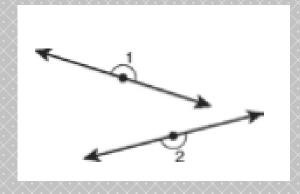
3 50

If two angles are complements of the same angle, (or congruent angles), then they are congruent.


∠1 and ∠2 are complementary, and ∠1 and ∠3 are complementary.

 $\angle 2 \cong \angle 3.$

Given: $\angle 1$ and $\angle 2$ are complementary $\angle 3$ and $\angle 2$ are complementary Prove: $\angle 1 \cong \angle 3$


Statements	Reasons
∠1 and ∠2 are complementary ∠3 and ∠2 are complementary	Given
$m \angle 1 + m \angle 2 = 90$ $m \angle 3 + m \angle 2 = 90$	Definition of complementary angles.
$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	Transitive Property of =
$m \angle 1 = m \angle 3$	Subtraction Property of =
$\angle 1 \cong \angle 3$	Angles with the same measure are congruent.

PROOF OF CONGRUENT COMPLEMENTS THEOREM

Given: $\angle 1$ and $\angle 2$ are straight angles. **Prove:** $\angle 1 \cong \angle 2$

Statements	Reasons
1.a. Lland L2 are straight LS	1. Given
2. m∠1 = 180°, m∠2 = 180°	2. b. Def. of Str. LS
3. m∠1 = m∠2	3. Subst. Prop. of =
4. c. LI = LQ	4. Def. of ≅ ∠≦

Angles can be proven congruent in several different ways. The 4 Theorems suggest ways to do this.

HOMEWORK

Pages 113-116: 4, 6, 8, 12, 16, 18, 20, 24, 26