

ALGEBRAIC PROOF

 to review the properties of equality and use them to write algebraic proofs
 to identify properties of equality and congruence

OBJECTIVE

Properties of	Equality:
Addition Property	If $a = b$, then $a+c = b+c$
Subtraction Property	If $a = b$, then $a - c = b - c$
Multiplication Property	If $a = b$, then $a \cdot c = b \cdot c$
Division Property	If $a = b$, then $a \div c = b \div c$
Reflexive Property	a = a
Symmetric Property	If $a = b$, then $b = a$
Transitive Property	If a=b and b=c then a=c
Substitution Property	If a =b , then b can be substituted for a in any expression

KEY CONCEPTS

The Distributive	Property:
Sum:	a(b+c) = ab + ac
Difference:	a(b-c) = ab-ac

Properties of	Congruence:
Reflexive Property	$\overline{AB} \cong \overline{AB}; \ \angle A \cong \angle A$
Symmetric Property	$If \overline{AB} \cong \overline{CD}, then \overline{CD} \cong \overline{AB}$ $If \angle A \cong \angle B, then \angle B \cong \angle A$
Transitive Property	If $\overline{AB} \cong \overline{CD}$, and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$ (also for angles)

CLASS WORK

Solve each equation. Write a justification for each step.

2.
$$6r - 3 = -2(r + 1)$$

 $6r - 3 = -2(r + 1)$ Given
 $6r - 3 = -2r - 2$ Distrib. Prop
 $8r - 3 = -2$ Add. Prop. of
 $8r = 1$ Add. Prop. of
 $r = \frac{1}{8}$ Div. Prop. of

Write a justification for each step to solve for x.

 $m \angle ABC = m \angle ABD + m \angle DBC$ $\angle Add. Post.$ $8x^{\circ} = (3x + 5)^{\circ} + (6x - 16)^{\circ}$ Subst. Prop. of Equality8x = 9x - 11CLT/Dist. Prop./Simplify-x = -11Subtr. Prop. of Equality.x = 11Div. Prop. of Equality.

- 1. Identify the property that justifies the statement: $\angle DEF \cong \angle DEF$
- 2. Solve the equation. Write a justification for each step. 3(m + 4) = -m

3. Write a justification for each step.

Identify the property that justifies the statement:
 ∠DEF ≅ ∠DEF Reflexive Property of Congruence
 Solve the equation. Write a justification for each

step. $3(m + 4) = -m$	given
3m+12=-m	distributive property
3m = -m - 12	subtraction property of =
4m = -12	addition property of =
m = -3	division property of =

3. Write a justification for each step.

3(n - 2)° 58° V	$m \angle XYZ = m \angle 2 + m \angle 3$ $4n - 6 = 58 + (2n - 12)$	Angle addition postulate Substitution Property
$3(n-2)^{\circ}$ 1° 2° $(2n-12)^{\circ}$ W	4n - 6 = 2n + 46 2n - 6 = 46	CLT Subtraction Property of =
Y Z m $\angle WYV = 5n^{\circ}$	2n = 52 $n = 26$	Addition Property of =
$m \angle XYZ = (4n-6)^\circ$	n = 20	Division Property of =

SUMMARY

- -There are reasons or justifications for every statement made in Algebra and Geometry
- We use these reasons to logically proceed from one statement to the next

LEARNING RUBRIC

- Got It: Solves and justifies equations
- Almost There: Fills in the blanks for an algebraic proof
- Moving Forward: Identifies the justification for writing own equations
- Getting Started: Identifies the justification for algebraic operations

HOMEWORK

Pages 108-109: 16; 22-34 even; 40, 42